DispersionMeasure¶
- class baseband_tasks.dm.DispersionMeasure(value, unit=None, dtype=None, copy=True, order=None, subok=False, ndmin=0)[source] [edit on github]¶
Bases:
astropy.units.quantity.SpecificTypeQuantity
Dispersion measure quantity.
Quantity for electron column density, normally with units of pc / cm**3, with additional methods to help correct for dispersion delays:
time_delay
,phase_delay
, andphase_factor
.- Parameters
- dm
Quantity
or float Dispersion measure value. If a
Quantity
is passed, it must have units equivalent to pc/cm**3. If a float is passed, units may be passed tounit
, or will otherwise be assumed to be pc/cm**3.- unit
UnitBase
or None Units of
dm
. IfNone
(default), will be set either to the units ofdm
ifdm
is anQuantity
, or pc/cm**3 otherwise. Ifdm
is aQuantity
andunit
is also passed, will try to convertdm
tounit
.- *args, **kwargs
As for
Quantity
.
- dm
Notes
The constant relating dispersion measure to delay is hardcoded to match that of Tempo. See Taylor, Manchester, & Lyne (1993). It is accessible as the
dispersion_delay_constant
attribute.Attributes Summary
Dispersion delay constant, hardcoded to match that for Tempo.
Methods Summary
phase_delay
(freq[, ref_freq])Phase delay due to dispersion.
phase_factor
(freq[, ref_freq])Complex exponential factor due to dispersion.
time_delay
(freq[, ref_freq])Time delay due to dispersion.
Attributes Documentation
- dispersion_delay_constant = <Quantity 4149.37759336 cm3 MHz2 s / pc>¶
Dispersion delay constant, hardcoded to match that for Tempo.
Methods Documentation
- phase_delay(freq, ref_freq=None)[source] [edit on github]¶
Phase delay due to dispersion.
- Parameters
Notes
Given the dispersion measure \(\mathrm{DM}\), frequency \(f\) and reference frequency \(f_\mathrm{ref}\), calculates the phase amplitude of the transfer function (Eqn. 5.21, Lorimer & Kramer’s Handbook of Pulsar Astronomy, rewritten to use absolute frequency):
\[\Delta \phi = \frac{e^2\mathrm{DM}}{m_ec} f \left(\frac{1} {f_\mathrm{ref}} - \frac{1}{f}\right)^2\]
- phase_factor(freq, ref_freq=None)[source] [edit on github]¶
Complex exponential factor due to dispersion.
This is just
exp(1j * phase_delay)
.
- time_delay(freq, ref_freq=None)[source] [edit on github]¶
Time delay due to dispersion.
- Parameters
Notes
Given the dispersion measure \(\mathrm{DM}\), frequency \(f\) and reference frequency \(f_\mathrm{ref}\), calculates the time delay (Eqn. 4.7, Lorimer & Kramer’s Handbook of Pulsar Astronomy):
\[\Delta t = \frac{e^2}{2\pi m_ec} \mathrm{DM}\left(\frac{1} {f_\mathrm{ref}^2} - \frac{1}{f^2}\right)\]where the dispersion delay constant is taken to be exactly (inverse of Eqn. 6 of Taylor, Manchester, & Lyne 1993):
\[\frac{e^2}{2\pi m_ec} = \frac{1}{2.410} \times 10^4\, \mathrm{MHz}^2\,\mathrm{pc}^{-1} \,\mathrm{cm}^3\,\mathrm{s}.\]