
baseband Documentation
Release 3.1.0

Marten H. van Kerkwijk, Chenchong Zhu

Jan 24, 2020





CONTENTS

I Overview 3

1 Installation 5

2 Getting Started with Baseband 7

3 Using Baseband 11

4 Glossary 25

II Specific File Formats 27

5 VDIF 31

6 MARK 5B 123

7 MARK 4 167

8 DADA 223

9 GUPPI 265

10 GSB 323

III Core Framework and Utilities 371

11 Baseband Helpers 375

12 VLBI Base 383

13 Sample Data Files 429

IV Developer Documentation 433

14 Supporting a New VDIF EDV 437

15 Release Procedure 445

i



V Project Details 451

16 Authors and Credits 455

17 Full Changelog 457

18 Licenses 461

VI Reference/API 463

19 baseband Package 465

Python Module Index 469

Index 471

ii



baseband Documentation, Release 3.1.0

Welcome to the Baseband documentation! Baseband is a package affiliated with the Astropy project for reading
and writing VLBI and other radio baseband files, with the aim of simplifying and streamlining data conversion and
standardization. It provides:

• File input/output objects for supported radio baseband formats, enabling selective decoding of data into Numpy
arrays, and encoding user-defined arrays into baseband formats. Supported formats are listed under specific
file formats.

• The ability to read from and write to an ordered sequence of files as if it was a single file.

If you used this package in your research, please cite it via DOI 10.5281/zenodo.1214268.

CONTENTS 1

https://www.astropy.org/affiliated/index.html
https://www.astropy.org
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://doi.org/10.5281/zenodo.1214268


baseband Documentation, Release 3.1.0

2 CONTENTS



Part I

Overview

3





CHAPTER

ONE

INSTALLATION

1.1 Requirements

Baseband requires:

• Astropy v3.0 or later

• Numpy v1.10 or later

1.2 Installing Baseband

To install Baseband with pip, run:

pip3 install baseband

Note: To run without pip potentially updating Numpy and Astropy, run, include the --no-deps flag.

1.2.1 Obtaining Source Code

The source code and latest development version of Baseband can found on its GitHub repo. You can get your own
clone using:

git clone git@github.com:mhvk/baseband.git

Of course, it is even better to fork it on GitHub, and then clone your own repository, so that you can more easily
contribute!

1.2.2 Running Code without Installing

As Baseband is purely Python, it can be used without being built or installed, by appending the directory it is located
in to the PYTHON_PATH environment variable. Alternatively, you can use sys.path within Python to append the path:

import sys
sys.path.append(BASEBAND_PATH)

where BASEBAND_PATH is the directory you downloaded or cloned Baseband into.

5

https://www.astropy.org
https://www.numpy.org/
https://pip.pypa.io/
https://github.com/mhvk/baseband
https://docs.python.org/3/library/sys.html#sys.path


baseband Documentation, Release 3.1.0

1.2.3 Installing Source Code

If you want Baseband to be more broadly available, either to all users on a system, or within, say, a virtual environment,
use setup.py in the root directory by calling:

python3 setup.py install

For general information on setup.py, see its documentation . Many of the setup.py options are inherited from
Astropy (specifically, from Astropy -affiliated package manager) and are described further in Astropy’s installation
documentation .

1.3 Testing the Installation

The root directory setup.py can also be used to test if Baseband can successfully be run on your system:

python3 setup.py test

or, inside of Python:

import baseband
baseband.test()

These tests require pytest to be installed. Further documentation can be found on the Astropy running tests documen-
tation .

1.4 Building Documentation

Note: As with Astropy, building the documentation is unnecessary unless you are writing new documentation or do
not have internet access, as Baseband’s documentation is available online at baseband.readthedocs.io.

The Baseband documentation can be built again using setup.py from the root directory:

python3 setup.py build_docs

This requires to have Sphinx installed (and its dependencies).

6 Chapter 1. Installation

https://docs.python.org/3.5/install/index.html#install-index
https://github.com/astropy/package-template
https://astropy.readthedocs.io/en/stable/install.html
https://astropy.readthedocs.io/en/stable/install.html
https://pytest.org
https://astropy.readthedocs.io/en/stable/development/testguide.html#running-tests
https://astropy.readthedocs.io/en/stable/development/testguide.html#running-tests
https://baseband.readthedocs.io
https://www.sphinx-doc.org


CHAPTER

TWO

GETTING STARTED WITH BASEBAND

This quickstart tutorial is meant to help the reader hit the ground running with Baseband. For more detail, including
writing to files, see Using Baseband.

For installation instructions, please see Installing Baseband.

When using Baseband, we typically will also use numpy, astropy.units, and astropy.time.Time. Let’s import all
of these:

>>> import baseband
>>> import numpy as np
>>> import astropy.units as u
>>> from astropy.time import Time

2.1 Opening Files

For this tutorial, we’ll use two sample files:

>>> from baseband.data import SAMPLE_VDIF, SAMPLE_MARK5B

The first file is a VDIF one created from EVN/VLBA observations of Black Widow pulsar PSR B1957+20, while the
second is a Mark 5B from EVN/WSRT observations of the same pulsar.

To open the VDIF file:

>>> fh_vdif = baseband.open(SAMPLE_VDIF)

Opening the Mark 5B file is slightly more involved, as not all required metadata is stored in the file itself:

>>> fh_m5b = baseband.open(SAMPLE_MARK5B, nchan=8, sample_rate=32*u.MHz,
... ref_time=Time('2014-06-13 12:00:00'))

Here, we’ve manually passed in as keywords the number of channels, the sample rate (number of samples per channel
per second) as an astropy.units.Quantity, and a reference time within 500 days of the start of the observation as
an astropy.time.Time. That last keyword is needed to properly read timestamps from the Mark 5B file.

baseband.open tries to open files using all available formats, returning whichever is successful. If you know the
format of your file, you can pass its name with the format keyword, or directly use its format opener (for VDIF, it
is baseband.vdif.open). Also, the baseband.file_info function can help determine the format and any missing
information needed by baseband.open - see Inspecting Files.

Do you have a sequence of files you want to read in? You can pass a list of filenames to baseband.open, and it will
open them up as if they were a single file! See Reading or Writing to a Sequence of Files.

7

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
http://docs.astropy.org/en/stable/units/index.html#module-astropy.units
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://www.evlbi.org/
https://public.nrao.edu/telescopes/vlba/
https://en.wikipedia.org/wiki/Black_Widow_Pulsar
https://www.astron.nl/radio-observatory/public/public-0
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time


baseband Documentation, Release 3.1.0

2.2 Reading Files

Radio baseband files are generally composed of blocks of binary data, or payloads, stored alongside corresponding
metadata, or headers. Each header and payload combination is known as a data frame, and most formats feature files
composed of a long series of frames.

Baseband file objects are frame-reading wrappers around Python file objects, and have the same interface, including
seek for seeking to different parts of the file, tell for reporting the file pointer’s current position, and read for reading
data. The main difference is that Baseband file objects read and navigate in units of samples.

Let’s read some samples from the VDIF file:

>>> data = fh_vdif.read(3)
>>> data
array([[-1. , 1. , 1. , -1. , -1. , -1. ,

3.316505, 3.316505],
[-1. , 1. , -1. , 1. , 1. , 1. ,

3.316505, 3.316505],
[ 3.316505, 1. , -1. , -1. , 1. , 3.316505,
-3.316505, 3.316505]], dtype=float32)

>>> data.shape
(3, 8)

Baseband decodes binary data into ndarray objects. Notice we input 3, and received an array of shape (3, 8);
this is because there are 8 VDIF threads. Threads and channels represent different components of the data such as
polarizations or frequency sub-bands, and the collection of all components at one point in time is referred to as a
complete sample. Baseband reads in units of complete samples, and works with sample rates in units of complete
samples per second (including with the Mark 5B example above). Like an ndarray, calling fh_vdif.shape returns
the shape of the entire dataset:

>>> fh_vdif.shape
(40000, 8)

The first axis represents time, and all additional axes represent the shape of a complete sample. A labelled version of
the complete sample shape is given by:

>>> fh_vdif.sample_shape
SampleShape(nthread=8)

Baseband extracts basic properties and header metadata from opened files. Notably, the start and end times of the file
are given by:

>>> fh_vdif.start_time
<Time object: scale='utc' format='isot' value=2014-06-16T05:56:07.000000000>
>>> fh_vdif.stop_time
<Time object: scale='utc' format='isot' value=2014-06-16T05:56:07.001250000>

For an overview of the file, we can either print fh_vdif itself, or use the info method:

>>> fh_vdif
<VDIFStreamReader name=... offset=3

sample_rate=32.0 MHz, samples_per_frame=20000,
sample_shape=SampleShape(nthread=8),
bps=2, complex_data=False, edv=3, station=65532,
start_time=2014-06-16T05:56:07.000000000>

>>> fh_vdif.info
Stream information:

(continues on next page)

8 Chapter 2. Getting Started with Baseband

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


baseband Documentation, Release 3.1.0

(continued from previous page)

start_time = 2014-06-16T05:56:07.000000000
stop_time = 2014-06-16T05:56:07.001250000
sample_rate = 32.0 MHz
shape = (40000, 8)
format = vdif
bps = 2
complex_data = False
verify = fix
readable = True

checks: decodable: True
continuous: no obvious gaps

File information:
edv = 3
number_of_frames = 16
thread_ids = [0, 1, 2, 3, 4, 5, 6, 7]
number_of_framesets = 2
frame_rate = 1600.0 Hz
samples_per_frame = 20000
sample_shape = (8, 1)

Seeking is also done in units of complete samples, which is equivalent to seeking in timesteps. Let’s move forward
100 complete samples:

>>> fh_vdif.seek(100)
100

Seeking from the end or current position is also possible, using the same syntax as for typical file objects. It is also
possible to seek in units of time:

>>> fh_vdif.seek(-1000, 2) # Seek 1000 samples from end.
39000
>>> fh_vdif.seek(10*u.us, 1) # Seek 10 us from current position.
39320

fh_vdif.tell returns the current offset in samples or in time:

>>> fh_vdif.tell()
39320
>>> fh_vdif.tell(unit=u.us) # Time since start of file.
<Quantity 1228.75 us>
>>> fh_vdif.tell(unit='time')
<Time object: scale='utc' format='isot' value=2014-06-16T05:56:07.001228750>

Finally, we close both files:

>>> fh_vdif.close()
>>> fh_m5b.close()

2.2. Reading Files 9



baseband Documentation, Release 3.1.0

10 Chapter 2. Getting Started with Baseband



CHAPTER

THREE

USING BASEBAND

For most file formats, one can simply import baseband and use baseband.open to access the file. This gives one a
filehandle from which one can read decoded samples:

>>> import baseband
>>> from baseband.data import SAMPLE_DADA
>>> fh = baseband.open(SAMPLE_DADA)
>>> fh.read(3)
array([[ -38.-38.j, -38.-38.j],

[ -38.-38.j, -40. +0.j],
[-105.+60.j, 85.-15.j]], dtype=complex64)

>>> fh.close()

For other file formats, a bit more information is needed. Below, we cover the basics of inspecting files, reading from
and writing to files, converting from one format to another, and diagnosing problems. We assume that Baseband as
well as NumPy and the Astropy units module have been imported:

>>> import baseband
>>> import numpy as np
>>> import astropy.units as u

3.1 Inspecting Files

Baseband allows you to quickly determine basic properties of a file, including what format it is, using the baseband.
file_info function. For instance, it shows that the sample VDIF file that comes with Baseband is very short (sample
files can all be found in the baseband.data module):

>>> import baseband.data
>>> baseband.file_info(baseband.data.SAMPLE_VDIF)
Stream information:
start_time = 2014-06-16T05:56:07.000000000
stop_time = 2014-06-16T05:56:07.001250000
sample_rate = 32.0 MHz
shape = (40000, 8)
format = vdif
bps = 2
complex_data = False
verify = fix
readable = True

checks: decodable: True
continuous: no obvious gaps

(continues on next page)

11

https://www.numpy.org/
https://www.astropy.org


baseband Documentation, Release 3.1.0

(continued from previous page)

File information:
edv = 3
number_of_frames = 16
thread_ids = [0, 1, 2, 3, 4, 5, 6, 7]
number_of_framesets = 2
frame_rate = 1600.0 Hz
samples_per_frame = 20000
sample_shape = (8, 1)

The same function will also tell you when more information is needed. For instance, for Mark 5B files one needs the
number of channels used, as well as (roughly) when the data were taken:

>>> baseband.file_info(baseband.data.SAMPLE_MARK5B)
File information:
format = mark5b
number_of_frames = 4
frame_rate = 6400.0 Hz
bps = 2
complex_data = False
readable = False

missing: nchan: needed to determine sample shape, frame rate, decode data.
kday, ref_time: needed to infer full times.

>>> from astropy.time import Time
>>> baseband.file_info(baseband.data.SAMPLE_MARK5B, nchan=8, ref_time=Time('2014-01-01'))
Stream information:
start_time = 2014-06-13T05:30:01.000000000
stop_time = 2014-06-13T05:30:01.000625000
sample_rate = 32.0 MHz
shape = (20000, 8)
format = mark5b
bps = 2
complex_data = False
verify = fix
readable = True

checks: decodable: True
continuous: no obvious gaps

File information:
number_of_frames = 4
frame_rate = 6400.0 Hz
samples_per_frame = 5000
sample_shape = (8,)

The information is gleaned from info properties on the various file and stream readers (see below).

Note: The one format for which file_info works a bit differently is GSB, as this format requires separate time-stamp
and raw data files. Only the timestamp file can be inspected usefully.

12 Chapter 3. Using Baseband



baseband Documentation, Release 3.1.0

3.2 Reading Files

3.2.1 Opening Files

As shown at the very start, files can be opened with the general baseband.open function. This will try to determine
the file type using file_info, load the corresponding baseband module, and then open the file using that module’s
master input/output function.

Generally, if one knows the file type, one might as well work with the corresponding module directly. For instance, to
explicitly use the DADA reader to open the sample DADA file included in Baseband, one can use the DADA module’s
open function:

>>> from baseband import dada
>>> from baseband.data import SAMPLE_DADA
>>> fh = dada.open(SAMPLE_DADA, 'rs')
>>> fh.read(3)
array([[ -38.-38.j, -38.-38.j],

[ -38.-38.j, -40. +0.j],
[-105.+60.j, 85.-15.j]], dtype=complex64)

>>> fh.close()

In general, file I/O and data manipulation use the same syntax across all file formats. When opening Mark 4 and Mark
5B files, however, some additional arguments may need to be passed (as was the case above for inspecting a Mark 5B
file, and indeed this is a good way to find out what is needed). Notes on such features and quirks of individual formats
can be found in the API entries of their open functions, and within the Specific file format documentation.

For the rest of this section, we will stick to VDIF files.

3.2.2 Decoding Data and the Sample File Pointer

By giving the openers a 'rs' flag, which is the default, we open files in “stream reader” mode, where a file is accessed
as if it were a stream of samples. For VDIF, open will then return an instance of VDIFStreamReader, which wraps a
raw data file with methods to decode the binary data frames and seek to and read data samples. To decode the first 12
samples into a ndarray, we would use the read method:

>>> from baseband import vdif
>>> from baseband.data import SAMPLE_VDIF
>>> fh = vdif.open(SAMPLE_VDIF, 'rs')
>>> d = fh.read(12)
>>> type(d)
<... 'numpy.ndarray'>
>>> d.shape
(12, 8)
>>> d[:, 0].astype(int) # First thread.
array([-1, -1, 3, -1, 1, -1, 3, -1, 1, 3, -1, 1])

As discussed in detail in the VDIF section, VDIF files are sequences of data frames, each of which is comprised of a
header (which holds information like the time at which the data was taken) and a payload, or block of data. Multiple
concurrent time streams can be stored within a single frame; each of these is called a “channel”. Moreover, groups
of channels can be stored over multiple frames, each of which is called a “thread”. Our sample file is an “8-thread,
single-channel file” (8 concurrent time streams with 1 stream per frame), and in the example above, fh.read decoded
the first 12 samples from all 8 threads, mapping thread number to the second axis of the decoded data array. Reading
files with multiple threads and channels will produce 3-dimensional arrays.

fh includes shape, size and ndim, which give the shape, total number of elements and dimensionality of the file’s
entire dataset if it was decoded into an array. The number of complete samples - the set of samples from all available

3.2. Reading Files 13

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


baseband Documentation, Release 3.1.0

threads and channels for one point in time - in the file is given by the first element in shape:

>>> fh.shape # Shape of all data from the file in decoded array form.
(40000, 8)
>>> fh.shape[0] # Number of complete samples.
40000
>>> fh.size
320000
>>> fh.ndim
2

The shape of a single complete sample, including names indicating the meaning of shape dimensions, is retrievable
using:

>>> fh.sample_shape
SampleShape(nthread=8)

By default, dimensions of length unity are squeezed, or removed from the sample shape. To retain them, we can pass
squeeze=False to open:

>>> fhns = vdif.open(SAMPLE_VDIF, 'rs', squeeze=False)
>>> fhns.sample_shape # Sample shape now keeps channel dimension.
SampleShape(nthread=8, nchan=1)
>>> fhns.ndim # fh.shape and fh.ndim also change with squeezing.
3
>>> d2 = fhns.read(12)
>>> d2.shape # Decoded data has channel dimension.
(12, 8, 1)
>>> fhns.close()

Basic information about the file is obtained by either by fh.info or simply fh itself:

>>> fh.info
Stream information:
start_time = 2014-06-16T05:56:07.000000000
stop_time = 2014-06-16T05:56:07.001250000
sample_rate = 32.0 MHz
shape = (40000, 8)
format = vdif
bps = 2
complex_data = False
verify = fix
readable = True

checks: decodable: True
continuous: no obvious gaps

File information:
edv = 3
number_of_frames = 16
thread_ids = [0, 1, 2, 3, 4, 5, 6, 7]
number_of_framesets = 2
frame_rate = 1600.0 Hz
samples_per_frame = 20000
sample_shape = (8, 1)

>>> fh
<VDIFStreamReader name=... offset=12

(continues on next page)

14 Chapter 3. Using Baseband



baseband Documentation, Release 3.1.0

(continued from previous page)

sample_rate=32.0 MHz, samples_per_frame=20000,
sample_shape=SampleShape(nthread=8),
bps=2, complex_data=False, edv=3, station=65532,
start_time=2014-06-16T05:56:07.000000000>

Not coincidentally, the first is identical to what we found above using file_info.

The filehandle itself also shows the offset, the current location of the sample file pointer. Above, it is at 12 since
we have read in 12 (complete) samples. If we called fh.read (12) again we would get the next 12 samples. If we
instead called fh.read(), it would read from the pointer’s current position to the end of the file. If we wanted all the
data in one array, we would move the file pointer back to the start of file, using fh.seek, before reading:

>>> fh.seek(0) # Seek to sample 0. Seek returns its offset in counts.
0
>>> d_complete = fh.read()
>>> d_complete.shape
(40000, 8)

We can also move the pointer with respect to the end of file by passing 2 as a second argument:

>>> fh.seek(-100, 2) # Second arg is 0 (start of file) by default.
39900
>>> d_end = fh.read(100)
>>> np.array_equal(d_complete[-100:], d_end)
True

-100 means 100 samples before the end of file, so d_end is equal to the last 100 entries of d_complete. Baseband only
keeps the most recently accessed data frame in memory, making it possible to analyze (normally large) files through
selective decoding using seek and read.

Note: As with file pointers in general, fh.seek will not return an error if one seeks beyond the end of file. Attempting
to read beyond the end of file, however, will result in an EOFError.

To determine where the pointer is located, we use fh.tell():

>>> fh.tell()
40000
>>> fh.close()

Caution should be used when decoding large blocks of data using fh.read. For typical files, the resulting arrays are
far too large to hold in memory.

3.2.3 Seeking and Telling in Time With the Sample Pointer

We can use seek and tell with units of time rather than samples. To do this with tell, we can pass an appropriate
astropy.units.Unit object to its optional unit parameter:

>>> fh = vdif.open(SAMPLE_VDIF, 'rs')
>>> fh.seek(40000)
40000
>>> fh.tell(unit=u.ms)
<Quantity 1.25 ms>

Passing the string 'time' reports the pointer’s location in absolute time:

3.2. Reading Files 15

http://docs.astropy.org/en/stable/api/astropy.units.Unit.html#astropy.units.Unit


baseband Documentation, Release 3.1.0

>>> fh.tell(unit='time')
<Time object: scale='utc' format='isot' value=2014-06-16T05:56:07.001250000>

We can also pass an absolute astropy.time.Time, or a positive or negative time difference TimeDelta or astropy.
units.Quantity to seek. If the offset is a Time object, the second argument to seek is ignored.:

>>> from astropy.time.core import TimeDelta
>>> from astropy.time import Time
>>> fh.seek(TimeDelta(-5e-4, format='sec'), 2) # Seek -0.5 ms from end.
24000
>>> fh.seek(0.25*u.ms, 1) # Seek 0.25 ms from current position.
32000
>>> # Seek to specific time.
>>> fh.seek(Time('2014-06-16T05:56:07.001125'))
36000

We can retrieve the time of the first sample in the file using start_time, the time immediately after the last sample
using stop_time, and the time of the pointer’s current location (equivalent to fh.tell(unit='time')) using time:

>>> fh.start_time
<Time object: scale='utc' format='isot' value=2014-06-16T05:56:07.000000000>
>>> fh.stop_time
<Time object: scale='utc' format='isot' value=2014-06-16T05:56:07.001250000>
>>> fh.time
<Time object: scale='utc' format='isot' value=2014-06-16T05:56:07.001125000>
>>> fh.close()

3.2.4 Extracting Header Information

The first header of the file is stored as the header0 attribute of the stream reader object; it gives direct access to header
properties via keyword lookup:

>>> with vdif.open(SAMPLE_VDIF, 'rs') as fh:
... header0 = fh.header0
>>> header0['frame_length']
629

The full list of keywords is available by printing out header0:

>>> header0
<VDIFHeader3 invalid_data: False,

legacy_mode: False,
seconds: 14363767,
_1_30_2: 0,
ref_epoch: 28,
frame_nr: 0,
vdif_version: 1,
lg2_nchan: 0,
frame_length: 629,
complex_data: False,
bits_per_sample: 1,
thread_id: 1,
station_id: 65532,
edv: 3,
sampling_unit: True,

(continues on next page)

16 Chapter 3. Using Baseband

http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.time.TimeDelta.html#astropy.time.TimeDelta
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time


baseband Documentation, Release 3.1.0

(continued from previous page)

sampling_rate: 16,
sync_pattern: 0xacabfeed,
loif_tuning: 859832320,
_7_28_4: 15,
dbe_unit: 2,
if_nr: 0,
subband: 1,
sideband: True,
major_rev: 1,
minor_rev: 5,
personality: 131>

A number of derived properties, such as the time (as a Time object), are also available through the header object:

>>> header0.time
<Time object: scale='utc' format='isot' value=2014-06-16T05:56:07.000000000>

These are listed in the API for each header class. For example, the sample VDIF file’s headers are of class:

>>> type(header0)
<class 'baseband.vdif.header.VDIFHeader3'>

and so its attributes can be found here.

3.2.5 Reading Specific Components of the Data

By default, fh.read() returns complete samples, i.e. with all available threads, polarizations or channels. If we were
only interested in decoding a subset of the complete sample, we can select specific components by passing indexing
objects to the subset keyword in open. For example, if we only wanted thread 3 of the sample VDIF file:

>>> fh = vdif.open(SAMPLE_VDIF, 'rs', subset=3)
>>> fh.sample_shape
()
>>> d = fh.read(20000)
>>> d.shape
(20000,)
>>> fh.subset
(3,)
>>> fh.close()

Since by default data are squeezed, one obtains a data stream with just a single dimension. If one would like to keep
all information, one has to pass squeeze=False and also make subset a list (or slice):

>>> fh = vdif.open(SAMPLE_VDIF, 'rs', subset=[3], squeeze=False)
>>> fh.sample_shape
SampleShape(nthread=1, nchan=1)
>>> d = fh.read(20000)
>>> d.shape
(20000, 1, 1)
>>> fh.close()

Data with multi-dimensional samples can be subset by passing a tuple of indexing objects with the same dimensional
ordering as the (possibly squeezed) sample shape; in the case of the sample VDIF with squeeze=False, this is threads,
then channels. For example, if we wished to select threads 1 and 3, and channel 0:

3.2. Reading Files 17

http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://docs.python.org/3/library/stdtypes.html#tuple


baseband Documentation, Release 3.1.0

>>> fh = vdif.open(SAMPLE_VDIF, 'rs', subset=([1, 3], 0), squeeze=False)
>>> fh.sample_shape
SampleShape(nthread=2)
>>> fh.close()

Generally, subset accepts any object that can be used to index a numpy.ndarray, including advanced indexing (as
done above, with subset=([1, 3], 0)). If possible, slices should be used instead of list of integers, since indexing
with them returns a view rather than a copy and thus avoid unnecessary processing and memory allocation. (An
exception to this is VDIF threads, where the subset is used to selectively read specific threads, and thus is not used for
actual slicing of the data.)

3.3 Writing to Files and Format Conversion

3.3.1 Writing to a File

To write data to disk, we again use open. Writing data in a particular format requires both the header and data samples.
For modifying an existing file, we have both the old header and old data handy.

As a simple example, let’s read in the 8-thread, single-channel sample VDIF file and rewrite it as an single-thread,
8-channel one, which, for example, may be necessary for compatibility with DSPSR:

>>> import baseband.vdif as vdif
>>> from baseband.data import SAMPLE_VDIF
>>> fr = vdif.open(SAMPLE_VDIF, 'rs')
>>> fw = vdif.open('test_vdif.vdif', 'ws',
... sample_rate=fr.sample_rate,
... samples_per_frame=fr.samples_per_frame // 8,
... nthread=1, nchan=fr.sample_shape.nthread,
... complex_data=fr.complex_data, bps=fr.bps,
... edv=fr.header0.edv, station=fr.header0.station,
... time=fr.start_time)

The minimal parameters needed to generate a file are listed under the documentation for each format’s open, though
comprehensive lists can be found in the documentation for each format’s stream writer class (eg. for VDIF, it’s under
VDIFStreamWriter). In practice we specify as many relevant header properties as available to obtain a particular file
structure. If we possess the exact first header of the file, it can simply be passed to open via the header keyword. In
the example above, though, we manually switch the values of nthread and nchan. Because VDIF EDV = 3 requires
each frame’s payload to contain 5000 bytes, and nchan is now a factor of 8 larger, we decrease samples_per_frame,
the number of complete (i.e. all threads and channels included) samples per frame, by a factor of 8.

Encoding samples and writing data to file is done by passing data arrays into fw’s write method. The first dimension
of the arrays is sample number, and the remaining dimensions must be as given by fw.sample_shape:

>>> fw.sample_shape
SampleShape(nchan=8)

In this case, the required dimensions are the same as the arrays from fr.read. We can thus write the data to file using:

>>> while fr.tell() < fr.shape[0]:
... fw.write(fr.read(fr.samples_per_frame))
>>> fr.close()
>>> fw.close()

For our sample file, we could simply have written

18 Chapter 3. Using Baseband

https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.indexing.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://github.com/demorest/dspsr


baseband Documentation, Release 3.1.0

fw.write(fr.read())

instead of the loop, but for large files, reading and writing should be done in smaller chunks to minimize memory
usage. Baseband stores only the data frame or frame set being read or written to in memory.

We can check the validity of our new file by re-opening it:

>>> fr = vdif.open(SAMPLE_VDIF, 'rs')
>>> fh = vdif.open('test_vdif.vdif', 'rs')
>>> fh.sample_shape
SampleShape(nchan=8)
>>> np.all(fr.read() == fh.read())
True
>>> fr.close()
>>> fh.close()

Note: One can also use the top-level open function for writing, with the file format passed in via its format argument.

3.3.2 File Format Conversion

It is often preferable to convert data from one file format to another that offers wider compatibility, or better fits the
structure of the data. As an example, we convert the sample Mark 4 data to VDIF.

Since we don’t have a VDIF header handy, we pass the relevant Mark 4 header values into vdif.open to create one:

>>> import baseband.mark4 as mark4
>>> from baseband.data import SAMPLE_MARK4
>>> fr = mark4.open(SAMPLE_MARK4, 'rs', ntrack=64, decade=2010)
>>> spf = 640 # fanout * 160 = 640 invalid samples per Mark 4 frame
>>> fw = vdif.open('m4convert.vdif', 'ws', sample_rate=fr.sample_rate,
... samples_per_frame=spf, nthread=1,
... nchan=fr.sample_shape.nchan,
... complex_data=fr.complex_data, bps=fr.bps,
... edv=1, time=fr.start_time)

We choose edv = 1 since it’s the simplest VDIF EDV whose header includes a sampling rate. The concept of threads
does not exist in Mark 4, so the file effectively has nthread = 1. As discussed in the Mark 4 documentation, the data
at the start of each frame is effectively overwritten by the header and are represented by invalid samples in the stream
reader. We set samples_per_frame to 640 so that each section of invalid data is captured in a single frame.

We now write the data to file, manually flagging each invalid data frame:

>>> while fr.tell() < fr.shape[0]:
... d = fr.read(fr.samples_per_frame)
... fw.write(d[:640], valid=False)
... fw.write(d[640:])
>>> fr.close()
>>> fw.close()

Lastly, we check our new file:

>>> fr = mark4.open(SAMPLE_MARK4, 'rs', ntrack=64, decade=2010)
>>> fh = vdif.open('m4convert.vdif', 'rs')
>>> np.all(fr.read() == fh.read())
True

(continues on next page)

3.3. Writing to Files and Format Conversion 19



baseband Documentation, Release 3.1.0

(continued from previous page)

>>> fr.close()
>>> fh.close()

For file format conversion in general, we have to consider how to properly scale our data to make the best use of the
dynamic range of the new encoded format. For VLBI formats like VDIF, Mark 4 and Mark 5B, samples of the same
size have the same scale, which is why we did not have to rescale our data when writing 2-bits-per-sample Mark 4 data
to a 2-bits-per-sample VDIF file. Rescaling is necessary, though, to convert DADA or GSB to VDIF. For examples of
rescaling, see the baseband/tests/test_conversion.py file.

3.4 Reading or Writing to a Sequence of Files

Data from one continuous observation is sometimes spread over a sequence of files. Baseband includes the
sequentialfile module for reading in a sequence as if it were one contiguous file. This module is called when
a list, tuple or filename template is passed to eg. baseband.open or baseband.vdif.open, making the syntax for
handling multiple files nearly identical to that for single ones.

As an example, we write the data from the sample VDIF file baseband/data/sample.vdif into a sequence of two
files and then read the files back in. We first load the required data:

>>> from baseband import vdif
>>> from baseband.data import SAMPLE_VDIF
>>> import numpy as np
>>> fh = vdif.open(SAMPLE_VDIF, 'rs')
>>> d = fh.read()

We then create a sequence of filenames:

>>> filenames = ["seqvdif_{0}".format(i) for i in range(2)]

When passing filenames to open, we must also pass file_size, the file size in bytes, in addition to the usual kwargs
for writing a file. Since we wish to split the sample file in two, and the file consists of two framesets, we set file_size
to the byte size of one frameset (we could have equivalently set it to fh.fh_raw.seek(0, 2) // 2):

>>> file_size = 8 * fh.header0.frame_nbytes
>>> fw = vdif.open(filenames, 'ws', header0=fh.header0,
... file_size=file_size, sample_rate=fh.sample_rate,
... nthread=fh.sample_shape.nthread)
>>> fw.write(d)
>>> fw.close() # This implicitly closes fwr.

Note: file_size sets the maximum size a file can reach before the writer writes to the next one, so setting file_size
to a larger value than above will lead to the two files having different sizes. By default, file_size=None, meaning it
can be arbitrarily large, in which case only one file will be created.

We now read the sequence and confirm their contents are identical to those of the sample file:

>>> fr = vdif.open(filenames, 'rs', sample_rate=fh.sample_rate)
>>> fr.header0.time == fh.header0.time
True
>>> np.all(fr.read() == d)
True
>>> fr.close()

20 Chapter 3. Using Baseband



baseband Documentation, Release 3.1.0

When reading, the filename sequence must be ordered in time.

We can also open the second file on its own and confirm it contains the second frameset of the sample file:

>>> fsf = vdif.open(filenames[1], mode='rs', sample_rate=fh.sample_rate)
>>> fh.seek(fh.shape[0] // 2) # Seek to start of second frameset.
20000
>>> fsf.header0.time == fh.time
True
>>> np.all(fsf.read() == fh.read())
True
>>> fsf.close()

In situations where the file_size is known, but not the total number of files to write, one may use the
FileNameSequencer class to create an iterable without a user-defined size. The class is initialized with a template
string that can be formatted with keywords, and a optional header that can either be an actual header or a dict with
the relevant keywords. The template may also contain the special keyword ‘{file_nr}’, which is equal to the indexing
value (instead of a header entry).

As an example, let us create a sequencer:

>>> from baseband.helpers import sequentialfile as sf
>>> filenames = sf.FileNameSequencer('f.edv{edv:d}.{file_nr:03d}.vdif',
... header=fh.header0)

Indexing the sequencer using square brackets returns a filename:

>>> filenames[0]
'f.edv3.000.vdif'
>>> filenames[42]
'f.edv3.042.vdif'

The sequencer has extracted the EDV from the header we passed in, and the file number from the index. We can use
the sequencer to write a VDIF file sequence:

>>> fw = vdif.open(filenames, 'ws', header0=fh.header0,
... file_size=file_size, sample_rate=fh.sample_rate,
... nthread=fh.sample_shape.nthread)
>>> d = np.concatenate([d, d, d])
>>> fw.write(d)
>>> fw.close()

This creates 6 files:

>>> import glob
>>> len(glob.glob("f.edv*.vdif"))
6

We can read the file sequence using the same sequencer. In reading mode, the sequencer determines the number of
files by finding the largest file available that fits the template:

>>> fr = vdif.open(filenames, 'rs', sample_rate=fh.sample_rate)
>>> fr.header0.time == fh.header0.time
True
>>> np.all(fr.read() == d)
True
>>> fr.close()
>>> fh.close() # Close sample file as well.

3.4. Reading or Writing to a Sequence of Files 21

https://docs.python.org/3/library/stdtypes.html#dict


baseband Documentation, Release 3.1.0

Because DADA and GUPPI data are usually stored in file sequences with names derived from header values - eg.
‘puppi_58132_J1810+1744_2176.0010.raw’, their format openers have template support built-in. For usage details,
please see the API entries for baseband.dada.open and baseband.guppi.open.

3.5 Diagnosing problems with baseband files

Little is more annoying than starting a very long analysis script only to find the reader crashed with an error near the
end. Unfortunately, while there is only one way for success, there are many for failure. Some, though, can be found
by inspecting files. To see what would show up for a file that misses a frame, we first construct one:

>>> from astropy.time import Time
>>> from baseband import vdif
>>> fc = vdif.open('corrupt.vdif', 'ws', edv=1, nthread=2,
... bps=8, samples_per_frame=16,
... time=Time('J2010'), sample_rate=16*u.kHz)
>>> fc.write(np.zeros((8000, 2)))
>>> fc.fh_raw.seek(-100, 1)
47900
>>> fc.write(np.zeros((8000, 2)))
>>> fc.close()

Here, rewinding the internal raw file pointer a bit to simulate “missing bytes” is an implementation detail that one
should not rely on!

Now check its info:

>>> fh = baseband.vdif.open('corrupt.vdif', 'rs', verify=True)
>>> fh.info.readable
False
>>> fh.info
Stream information:
start_time = 2009-12-31T23:58:53.816000000
stop_time = 2009-12-31T23:58:54.816000000
sample_rate = 0.016 MHz
shape = (16000, 2)
format = vdif
bps = 8
complex_data = False
verify = True
readable = False

checks: decodable: True
continuous: False

errors: continuous: While reading at 7968: AssertionError()

warnings: number_of_frames: file contains non-integer number (1997.9166666666667) of frames

File information:
edv = 1
thread_ids = [0, 1]
frame_rate = 1000.0 Hz
samples_per_frame = 16
sample_shape = (2, 1)
>>> fh.close()

22 Chapter 3. Using Baseband



baseband Documentation, Release 3.1.0

In detail, the error is given for a position earlier than the one we corrupted, because internally baseband reads a frame
ahead since a corrupted frame typically means something is bad before as well.

This particular problem is not bad, since the VDIF reader can deal with missing frames. Indeed, when one opens the
file with the default verify='fix', one gets:

>>> fh = baseband.vdif.open('corrupt.vdif', 'rs')
>>> fh.info
Stream information:
start_time = 2009-12-31T23:58:53.816000000
stop_time = 2009-12-31T23:58:54.816000000
sample_rate = 0.016 MHz
shape = (16000, 2)
format = vdif
bps = 8
complex_data = False
verify = fix
readable = True

checks: decodable: True
continuous: fixable gaps

warnings: number_of_frames: file contains non-integer number (1997.9166666666667) of frames
continuous: While reading at 7968: problem loading frame set 498. Thread(s) [1] missing; set␣

→˓to invalid.

File information:
edv = 1
thread_ids = [0, 1]
frame_rate = 1000.0 Hz
samples_per_frame = 16
sample_shape = (2, 1)
>>> fh.close()

3.5. Diagnosing problems with baseband files 23



baseband Documentation, Release 3.1.0

24 Chapter 3. Using Baseband



CHAPTER

FOUR

GLOSSARY

channel
A single component of the complete sample, or a stream thereof. They typically represent one frequency sub-
band, the output from a single antenna, or (for channelized data) one spectral or Fourier channel, ie. one part of
a Fourier spectrum.

complete sample
Set of all component samples - ie. from all threads, polarizations, channels, etc. - for one point in time. Its
dimensions are given by the sample shape.

component
One individual thread and channel, or one polarization and channel, etc. Component samples each occupy one
element in decoded data arrays. A component sample is composed of one elementary sample if it is real, and
two if it is complex.

data frame
A block of time-sampled data, or payload, accompanied by a header. “Frame” for short.

data frameset
In the VDIF format, the set of all data frames representing the same segment of time. Each data frame consists
of sets of channels from different threads.

elementary sample
The smallest subdivision of a complete sample, i.e. the real / imaginary part of one component of a complete
sample.

header
Metadata accompanying a data frame.

payload
The data within a data frame.

sample
Data from one point in time. Complete samples contain samples from all components, while elementary samples
are one part of one component.

sample rate
Rate of complete samples.

sample shape
The lengths of the dimensions of the complete sample.

squeezing
The removal of any dimensions of length unity from decoded data.

stream
Timeseries of samples; may refer to all of, or a subsection of, the dataset.

25



baseband Documentation, Release 3.1.0

subset
A subset of a complete sample, in particular one defined by the user for selective decoding.

thread
A collection of channels from the complete sample, or a stream thereof. For VDIF, each thread is carried by a
separate (set of) data frame(s).

26 Chapter 4. Glossary



Part II

Specific File Formats

27





baseband Documentation, Release 3.1.0

Baseband’s code is subdivided into its supported file formats, and the following sections contain format specifications,
usage notes, troubleshooting help and APIs for each.

29



baseband Documentation, Release 3.1.0

30



CHAPTER

FIVE

VDIF

The VLBI Data Interchange Format (VDIF) was introduced in 2009 to standardize VLBI data transfer and storage.
Detailed specifications are found in VDIF’s specification document.

5.1 File Structure

A VDIF file is composed of data frames. Each has a header of eight 32-bit words (32 bytes; the exception is the
“legacy VDIF” format, which is four words, or 16 bytes, long), and a payload that ranges from 32 bytes to ~134
megabytes. Both are little-endian. The first four words of a VDIF header hold the same information in all VDIF
files, but the last four words hold optional user-defined data. The layout of these four words is specified by the file’s
extended-data version, or EDV. More detailed information on the header can be found in the tutorial for supporting
a new VDIF EDV .

A data frame may carry one or multiple channels, and a stream of data frames all carrying the same (set of) channels
is known as a thread and denoted by its thread ID. The collection of frames representing the same time segment (and
all possible thread IDs) is called a data frameset (or just “frameset”).

Strict time and thread ID ordering of frames in the stream, while considered part of VDIF best practices, is not
mandated, and cannot be guaranteed during data transmission over the internet.

5.2 Usage Notes

This section covers reading and writing VDIF files with Baseband; general usage can be found under the Using
Baseband section. For situations in which one is unsure of a file’s format, Baseband features the general baseband.
open and baseband.file_info functions, which are also discussed in Using Baseband. The examples below use the
small sample file baseband/data/sample.vdif, and the numpy, astropy.units, and baseband.vdif modules:

>>> import numpy as np
>>> from baseband import vdif
>>> import astropy.units as u
>>> from baseband.data import SAMPLE_VDIF

Simple reading and writing of VDIF files can be done entirely using open. Opening in binary mode provides a normal
file reader, but extended with methods to read a VDIFFrameSet data container for storing a frame set as well as
VDIFFrame one for storing a single frame:

>>> fh = vdif.open(SAMPLE_VDIF, 'rb')
>>> fs = fh.read_frameset()
>>> fs.data.shape
(20000, 8, 1)

(continues on next page)

31

https://www.vlbi.org/vdif/
https://vlbi.org/wp-content/uploads/2019/03/VDIF_specification_Release_1.1.1.pdf
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
http://docs.astropy.org/en/stable/units/index.html#module-astropy.units


baseband Documentation, Release 3.1.0

(continued from previous page)

>>> fr = fh.read_frame()
>>> fr.data.shape
(20000, 1)
>>> fh.close()

(As with other formats, fr.data is a read-only property of the frame.)

Opening in stream mode wraps the low-level routines such that reading and writing is in units of samples. It also
provides access to header information:

>>> fh = vdif.open(SAMPLE_VDIF, 'rs')
>>> fh
<VDIFStreamReader name=... offset=0

sample_rate=32.0 MHz, samples_per_frame=20000,
sample_shape=SampleShape(nthread=8),
bps=2, complex_data=False, edv=3, station=65532,
start_time=2014-06-16T05:56:07.000000000>

>>> d = fh.read(12)
>>> d.shape
(12, 8)
>>> d[:, 0].astype(int) # first thread
array([-1, -1, 3, -1, 1, -1, 3, -1, 1, 3, -1, 1])
>>> fh.close()

To set up a file for writing needs quite a bit of header information. Not coincidentally, what is given by the reader
above suffices:

>>> from astropy.time import Time
>>> fw = vdif.open('try.vdif', 'ws', sample_rate=32*u.MHz,
... samples_per_frame=20000, nchan=1, nthread=2,
... complex_data=False, bps=2, edv=3, station=65532,
... time=Time('2014-06-16T05:56:07.000000000'))
>>> with vdif.open(SAMPLE_VDIF, 'rs', subset=[1, 3]) as fh:
... d = fh.read(20000) # Get some data to write
>>> fw.write(d)
>>> fw.close()
>>> fh = vdif.open('try.vdif', 'rs')
>>> d2 = fh.read(12)
>>> np.all(d[:12] == d2)
True
>>> fh.close()

Here is a simple example to copy a VDIF file. We use the sort=False option to ensure the frames are written exactly
in the same order, so the files should be identical:

>>> with vdif.open(SAMPLE_VDIF, 'rb') as fr, vdif.open('try.vdif', 'wb') as fw:
... while True:
... try:
... fw.write_frameset(fr.read_frameset(sort=False))
... except:
... break

For small files, one could just do:

>>> with vdif.open(SAMPLE_VDIF, 'rs') as fr, \
... vdif.open('try.vdif', 'ws', header0=fr.header0,
... sample_rate=fr.sample_rate,

(continues on next page)

32 Chapter 5. VDIF



baseband Documentation, Release 3.1.0

(continued from previous page)

... nthread=fr.sample_shape.nthread) as fw:

... fw.write(fr.read())

This copies everything to memory, though, and some header information is lost.

5.3 Troubleshooting

In situations where the VDIF files being handled are corrupted or modified in an unusual way, using open will likely
lead to an exception being raised or to unexpected behavior. In such cases, it may still be possible to read in the data.
Below, we provide a few solutions and workarounds to do so.

Note: This list is certainly incomplete. If you have an issue (solved or otherwise) you believe should be on this list,
please e-mail the contributors.

5.3.1 AssertionError when checking EDV in header verify function

All VDIF header classes (other than VDIFLegacyHeader) check, using their verify function, that the EDV read from
file matches the class EDV. If they do not, the following line

assert self.edv is None or self.edv == self['edv']

returns an AssertionError. If this occurs because the VDIF EDV is not yet supported by Baseband, support can be
added by implementing a custom header class. If the EDV is supported, but the header deviates from the format found
in the VLBI.org EDV registry, the best solution is to create a custom header class, then override the subclass selector
in VDIFHeader. Tutorials for doing either can be found here.

5.3.2 EOFError encountered in _get_frame_rate when reading

When the sample rate is not input by the user and cannot be deduced from header information (if EDV = 1 or, the sam-
ple rate is found in the header), Baseband tries to determine the frame rate using the private method _get_frame_rate
in VDIFStreamReader (and then multiply by the samples per frame to obtain the sample rate). This function raises
EOFError if the file contains less than one second of data, or is corrupt. In either case the file can be opened still by
explicitly passing in the sample rate to open via the sample_rate keyword.

5.4 Reference/API

5.4.1 baseband.vdif Package

VLBI Data Interchange Format (VDIF) reader/writer

For the VDIF specification, see https://vlbi.org/vlbi-standards/vdif/

5.3. Troubleshooting 33

https://www.vlbi.org/vdif/
https://docs.python.org/3/library/exceptions.html#EOFError
https://vlbi.org/vlbi-standards/vdif/


baseband Documentation, Release 3.1.0

Functions

open(name[, mode]) Open VDIF file(s) for reading or writing.

open

baseband.vdif.open(name, mode='rs', **kwargs)
Open VDIF file(s) for reading or writing.

Opened as a binary file, one gets a wrapped filehandle that adds methods to read/write a frame. Opened as a
stream, the handle is wrapped further, with methods such as reading and writing to the file as if it were a stream
of samples.

Parameters

name
[str or filehandle, or sequence of str] File name, filehandle, or sequence of file names (see
Notes).

mode
[{‘rb’, ‘wb’, ‘rs’, or ‘ws’}, optional] Whether to open for reading or writing, and as a regular
binary file or as a stream. Default: ‘rs’, for reading a stream.

**kwargs
Additional arguments when opening the file as a stream.

— For reading a stream
[(see VDIFStreamReader)]

sample_rate
[Quantity, optional] Number of complete samples per second, i.e. the rate at which each
channel in each thread is sampled. If None (default), will be inferred from the header or by
scanning one second of the file.

squeeze
[bool, optional] If True (default), remove any dimensions of length unity from decoded data.

subset
[indexing object or tuple of objects, optional] Specific components of the complete sample
to decode (after possible squeezing). If a single indexing object is passed, it selects threads.
If a tuple is passed, the first selects threads and the second selects channels. If the tuple is
empty (default), all components are read.

fill_value
[float or complex, optional] Value to use for invalid or missing data. Default: 0.

verify
[bool, optional] Whether to do basic checks of frame integrity when reading. The first
frameset of the stream is always checked. Default: True.

— For writing a stream
[(see VDIFStreamWriter)]

header0
[VDIFHeader] Header for the first frame, holding time information, etc. Can instead give
keyword arguments to construct a header (see **kwargs).

34 Chapter 5. VDIF

http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

sample_rate
[Quantity] Number of complete samples per second, i.e. the rate at which each channel
in each thread is sampled. For EDV 1 and 3, can alternatively set sample_rate within the
header.

nthread
[int, optional] Number of threads (e.g., 2 for 2 polarisations). Default: 1.

squeeze
[bool, optional] If True (default), writer accepts squeezed arrays as input, and adds any
dimensions of length unity.

file_size
[int or None, optional] When writing to a sequence of files, the maximum size of one file in
bytes. If None (default), the file size is unlimited, and only the first file will be written to.

**kwargs
If the header is not given, an attempt will be made to construct one with any further keyword
arguments. See VDIFStreamWriter.

Notes

One can also pass to name a list, tuple, or subclass of FileNameSequencer. For writing to multiple files,
the file_size keyword must be passed or only the first file will be written to. One may also pass in a
sequentialfile object (opened in ‘rb’ mode for reading or ‘w+b’ for writing), though for typical use cases it
is practically identical to passing in a list or template.

Classes

VDIFFrame(header, payload[, valid, verify]) Representation of a VDIF data frame, consisting of a
header and payload.

VDIFFrameSet(frames[, header0]) Representation of a set of VDIF frames, combining dif-
ferent threads.

VDIFHeader(words[, edv, verify]) VDIF Header, supporting different Extended Data Ver-
sions.

VDIFPayload(words[, header, nchan, bps, . . . ]) Container for decoding and encoding VDIF payloads.

VDIFFrame

class baseband.vdif.VDIFFrame(header, payload, valid=None, verify=True)
Bases: baseband.vlbi_base.frame.VLBIFrameBase

Representation of a VDIF data frame, consisting of a header and payload.

Parameters

header
[VDIFHeader] Wrapper around the encoded header words, providing access to the header
information.

payload
[VDIFPayload] Wrapper around the payload, provding mechanisms to decode it.

5.4. Reference/API 35

http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None


baseband Documentation, Release 3.1.0

valid
[bool or None] Whether the data are valid. If None (default), is inferred from header. Note
that header is changed in-place if True or False.

verify
[bool] Whether or not to do basic assertions that check the integrity (e.g., that channel in-
formation and whether or not data are complex are consistent between header and data).
Default: True.

Notes

The Frame can also be instantiated using class methods:

fromfile : read header and payload from a filehandle

fromdata : encode data as payload

Of course, one can also do the opposite:

tofile : method to write header and payload to filehandle

data : property that yields full decoded payload

One can decode part of the payload by indexing or slicing the frame. If the frame does not contain valid data,
all values returned are set to self.fill_value.

A number of properties are defined: shape, dtype and size are the shape, type and number of complete samples
of the data array, and nbytes the frame size in bytes. Furthermore, the frame acts as a dictionary, with keys
those of the header. Any attribute that is not defined on the frame itself, such as .time will be looked up on the
header as well.

Attributes Summary

data Full decoded frame.
dtype Numeric type of the frame data.
fill_value Value to replace invalid data in the frame.
nbytes Size of the encoded frame in bytes.
ndim Number of dimensions of the frame data.
sample_shape Shape of a sample in the frame (nchan,).
shape Shape of the frame data.
size Total number of component samples in the frame

data.
valid Whether frame contains valid data.

Methods Summary

from_mark5b_frame(mark5b_frame[, verify]) Construct an Mark5B over VDIF frame
(EDV=0xab).

fromdata(data[, header, verify]) Construct frame from data and header.
fromfile(fh[, edv, verify]) Read a frame from a filehandle.
keys(self)
tofile(self, fh) Write encoded frame to filehandle.
verify(self) Verify integrity.

36 Chapter 5. VDIF

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Attributes Documentation

data
Full decoded frame.

dtype
Numeric type of the frame data.

fill_value
Value to replace invalid data in the frame.

nbytes
Size of the encoded frame in bytes.

ndim
Number of dimensions of the frame data.

sample_shape
Shape of a sample in the frame (nchan,).

shape
Shape of the frame data.

size
Total number of component samples in the frame data.

valid
Whether frame contains valid data.

This is just the opposite of the invalid_data item in the header. If set, that header item is adjusted
correspondingly.

Methods Documentation

classmethod from_mark5b_frame(mark5b_frame, verify=True, **kwargs)
Construct an Mark5B over VDIF frame (EDV=0xab).

Any additional keywords can be used to set VDIF header properties not found in the Mark 5B header (such
as station).

See https://vlbi.org/wp-content/uploads/2019/03/vdif_extension_0xab.pdf

classmethod fromdata(data, header=None, verify=True, **kwargs)
Construct frame from data and header.

Parameters

data
[ndarray] Array holding complex or real data to be encoded.

header
[VDIFHeader or None] If not given, will attempt to generate one using the keywords.

verify
[bool, optional] Whether or not to do basic assertions that check the integrity (e.g., that
channel information and whether or not data are complex are consistent between header
and data). Default: True.

**kwargs
If header is not given, these are used to initialize one.

5.4. Reference/API 37

https://vlbi.org/wp-content/uploads/2019/03/vdif_extension_0xab.pdf
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

classmethod fromfile(fh, edv=None, verify=True)
Read a frame from a filehandle.

Parameters

fh
[filehandle] From which the header and payload are read.

edv
[int, False, or None, optional] Extended Data Version. False is for legacy headers. If None
(default), it will be determined from the words themselves.

verify
[bool, optional] Whether or not to do basic assertions that check the integrity (e.g., that
channel information and whether or not data are complex are consistent between header
and data). Default: True.

keys(self)

tofile(self, fh)
Write encoded frame to filehandle.

verify(self)
Verify integrity.

Checks consistency between the header information and payload data shape and type.

VDIFFrameSet

class baseband.vdif.VDIFFrameSet(frames, header0=None)
Bases: object

Representation of a set of VDIF frames, combining different threads.

Parameters

frames
[list of VDIFFrame] Should all cover the same time span.

header0
[VDIFHeader] First header of the frame set. If None (default), is extracted from frames[0].

Notes

The FrameSet can also be read instantiated using class methods:

fromfile : read frames from a filehandle, optionally selecting threads

fromdata : encode data as a set of frames

Of course, one can also do the opposite:

tofile : write frames to filehandle

data : property that yields full decoded frame payloads

38 Chapter 5. VDIF

https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None


baseband Documentation, Release 3.1.0

One can decode part of the payload by indexing or slicing the frame. If the frame does not contain valid data,
all values returned are set to self.fill_value.

A number of properties are defined: shape, dtype and size are the shape, type and number of complete samples
of the data array, and nbytes the frame size in bytes. Like a VDIFFrame, the frame set acts as a dictionary,
with keys those of the header of the first frame (available via .header0). Any attribute that is not defined on the
frame set itself, such as .time will also be looked up on the header.

Attributes Summary

data Full decoded frame.
dtype Numeric type of the frameset data.
fill_value Value to replace invalid data in the frameset.
nbytes Size of the encoded frame in bytes.
ndim Number of dimensions of the frameset data.
sample_shape Shape of a sample in the frameset (nthread, nchan).
shape Shape of the frameset data.
size Total number of component samples in the frameset

data.
valid Whether frameset contains valid data.

Methods Summary

fromdata(data[, headers, verify]) Construct a set of frames from data and headers.
fromfile(fh[, thread_ids, edv, verify]) Read a frame set from a file, starting at the current

location.
keys(self)
tofile(self, fh) Write all encoded frames to filehandle.

Attributes Documentation

data
Full decoded frame.

dtype
Numeric type of the frameset data.

fill_value
Value to replace invalid data in the frameset.

nbytes
Size of the encoded frame in bytes.

ndim
Number of dimensions of the frameset data.

sample_shape
Shape of a sample in the frameset (nthread, nchan).

shape
Shape of the frameset data.

5.4. Reference/API 39



baseband Documentation, Release 3.1.0

size
Total number of component samples in the frameset data.

valid
Whether frameset contains valid data.

Methods Documentation

classmethod fromdata(data, headers=None, verify=True, **kwargs)
Construct a set of frames from data and headers.

Parameters

data
[ndarray] Array holding complex or real data to be encoded. Dimensions should be
(samples_per_frame, nthread, nchan).

headers
[VDIFHeader, list of same, or None] If a single header, a list with increasing thread_id
is generated. If not given, will attempt to generate a header from the keyword arguments.

verify
[bool] Whether or not to do basic assertions that check the integrety (e.g., that channel
information and whether or not data are complex are consistent between header and data).
Default: True.

**kwargs
If header is not given, these are used to initialize one.

Returns

frameset
[VDIFFrameSet]

classmethod fromfile(fh, thread_ids=None, edv=None, verify=True)
Read a frame set from a file, starting at the current location.

Parameters

fh
[filehandle] Handle to the VDIF file. Should be at the location where the frames are read
from.

thread_ids
[list or None, optional] The thread ids that should be read. If None (default), continue
reading threads as long as the frame number does not increase.

edv
[int or None, optional] The expected extended data version for the VDIF Header. If None
(default), use that of the first frame. (Passing it in slightly improves file integrity checking.)

verify
[bool, optional] Whether to do (light) sanity checks on the header. Default: True.

Returns

40 Chapter 5. VDIF

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

frameset
[VDIFFrameSet] Its frames property holds a list of frames (in order of either their
thread_id or following the input thread_ids list). Use the data attribute to convert
to an array.

keys(self)

tofile(self, fh)
Write all encoded frames to filehandle.

VDIFHeader

class baseband.vdif.VDIFHeader(words, edv=None, verify=True, **kwargs)
Bases: baseband.vlbi_base.header.VLBIHeaderBase

VDIF Header, supporting different Extended Data Versions.

Will initialize a header instance appropriate for a given EDV. See https://vlbi.org/wp-content/uploads/2019/03/
VDIF_specification_Release_1.1.1.pdf

Parameters

words
[tuple of int, or None] Eight (or four for legacy VDIF) 32-bit unsigned int header words. If
None, set to a tuple of zeros for later initialisation.

edv
[int, False, or None, optional] Extended data version. If False, a legacy header is used. If
None (default), it is determined from the header words; hence, setting it explicitly is useful
mostly for a slight speed-up. (Subclasses can override this default with an _edv attribute.)

verify
[bool] Whether to do basic verification of integrity. Default: True.

Returns

header
[VDIFHeader subclass] As appropriate for the extended data version.

Attributes Summary

bps Bits per elementary sample.
edv VDIF Extended Data Version (EDV).
frame_nbytes Size of the frame in bytes.
mutable Whether the header can be modified.
nbytes Size of the header in bytes.
nchan Number of channels in the frame.
payload_nbytes Size of the payload in bytes.
samples_per_frame Number of complete samples in the frame.
station Station ID: two ASCII characters, or 16-bit int.
time Converts ref_epoch, seconds, and frame_nr to Time

object.

5.4. Reference/API 41

https://vlbi.org/wp-content/uploads/2019/03/VDIF_specification_Release_1.1.1.pdf
https://vlbi.org/wp-content/uploads/2019/03/VDIF_specification_Release_1.1.1.pdf
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Methods Summary

copy(self) Create a mutable and independent copy of the header.
from_mark5b_header(mark5b_header, bps, . . . ) Construct an Mark5B over VDIF header

(EDV=0xab).
fromfile(fh[, edv, verify]) Read VDIF Header from file.
fromkeys(\*\*kwargs) Initialise a header from parsed values.
fromvalues([edv, verify]) Initialise a header from parsed values.
get_time(self[, frame_rate]) Converts ref_epoch, seconds, and frame_nr to Time

object.
invariant_pattern([invariants]) Pattern and mask shared between headers of a type

or stream.
invariants() Set of keys of invariant header parts.
keys(self) All keys defined for this header.
same_stream(self, other) Whether header is consistent with being from the

same stream.
set_time(self, time[, frame_rate]) Converts Time object to ref_epoch, seconds, and

frame_nr.
tofile(self, fh) Write VLBI frame header to filehandle.
update(self, \*[, verify]) Update the header by setting keywords or properties.
verify(self) Verify that the length of the words is consistent.

Attributes Documentation

bps
Bits per elementary sample.

edv
VDIF Extended Data Version (EDV).

frame_nbytes
Size of the frame in bytes.

mutable
Whether the header can be modified.

nbytes
Size of the header in bytes.

nchan
Number of channels in the frame.

payload_nbytes
Size of the payload in bytes.

samples_per_frame
Number of complete samples in the frame.

station
Station ID: two ASCII characters, or 16-bit int.

time
Converts ref_epoch, seconds, and frame_nr to Time object.

Uses ‘ref_epoch’, which stores the number of half-years from 2000, and ‘seconds’. By default, it also
calculates the offset using the current frame number. For non-zero ‘frame_nr’, this requires the frame rate,
which is calculated from the sample rate in the header.

42 Chapter 5. VDIF



baseband Documentation, Release 3.1.0

Parameters

frame_rate
[Quantity, optional] For non-zero ‘frame_nr’, this is required to calculate the correspond-
ing offset.

Returns

time
[Time]

Methods Documentation

copy(self)
Create a mutable and independent copy of the header.

Keyword arguments can be passed on as needed by possible subclasses.

classmethod from_mark5b_header(mark5b_header, bps, nchan, **kwargs)
Construct an Mark5B over VDIF header (EDV=0xab).

See https://vlbi.org/wp-content/uploads/2019/03/vdif_extension_0xab.pdf

Note that the Mark 5B header does not encode the bits-per-sample and the number of channels used
in the payload, so these need to be given separately. A complete frame can be encapsulated with
from_mark5b_frame.

Parameters

mark5b_header
[Mark5BHeader] Used to set time, etc.

bps
[int] Bits per elementary sample.

nchan
[int] Number of channels carried in the Mark 5B payload.

**kwargs
Any further arguments. Strictly, none are necessary to create a valid VDIF header, but this
can be used to pass on, e.g., invalid_data.

classmethod fromfile(fh, edv=None, verify=True)
Read VDIF Header from file.

Parameters

fh
[filehandle] To read data from.

edv
[int, False, or None, optional] Extended data version. If False, a legacy header is used. If
None (default), it is determined from the header. (Given it explicitly is mostly useful for a
slight speed-up.)

verify
[bool, optional] Whether to do basic verification of integrity. Default: True.

5.4. Reference/API 43

http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://vlbi.org/wp-content/uploads/2019/03/vdif_extension_0xab.pdf
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

classmethod fromkeys(**kwargs)
Initialise a header from parsed values.

Like fromvalues(), but without any interpretation of keywords.

Raises

KeyError
[if not all keys required are pass in.]

classmethod fromvalues(edv=False, *, verify=True, **kwargs)
Initialise a header from parsed values.

Here, the parsed values must be given as keyword arguments, i.e., for any header = cls(<data>), cls.
fromvalues(**header) == header.

However, unlike for the fromkeys() class method, data can also be set using arguments named after
methods, such as bps and time.

Given defaults:

invalid_data : False legacy_mode : False vdif_version : 1 thread_id : 0 frame_nr : 0 sync_pattern :
0xACABFEED for EDV 1 and 3, 0xa5ea5 for EDV 2

Values set by other keyword arguments (if present):

bits_per_sample : from bps frame_length : from samples_per_frame or frame_nbytes lg2_nchan : from
nchan station_id : from station sampling_rate, sampling_unit : from sample_rate ref_epoch, seconds,
frame_nr : from time

Note that to set time to non-integer seconds one also needs to pass in frame_rate or sample_rate.

get_time(self, frame_rate=None)
Converts ref_epoch, seconds, and frame_nr to Time object.

Uses ‘ref_epoch’, which stores the number of half-years from 2000, and ‘seconds’. By default, it also
calculates the offset using the current frame number. For non-zero ‘frame_nr’, this requires the frame rate,
which is calculated from the sample rate in the header.

Parameters

frame_rate
[Quantity, optional] For non-zero ‘frame_nr’, this is required to calculate the correspond-
ing offset.

Returns

time
[Time]

classmethod invariant_pattern(invariants=None, **kwargs)
Pattern and mask shared between headers of a type or stream.

This is mostly for use inside locate_frames().

Parameters

invariants
[set of str, optional] Set of keys to header parts that are shared between all headers of a
given type or within a given stream/file. Default: from invariants().

44 Chapter 5. VDIF

https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#False
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time


baseband Documentation, Release 3.1.0

**kwargs
Keyword arguments needed to instantiate an empty header. (Mostly for Mark 4).

Returns

pattern
[list of int] The pattern that is shared between headers. If called on an instance, just the
header words; if called on a class, words with defaults for the relevant parts set.

mask
[list of int] For each entry in pattern a bit mask with bits set for the parts that are invariant.

classmethod invariants()
Set of keys of invariant header parts.

On the class, this returns keys of parts that are shared by all headers for the type, on an instance, those that
are shared with other headers in the same file.

If neither are defined, returns ‘sync_pattern’ if the header containts that key.

keys(self)
All keys defined for this header.

same_stream(self, other)
Whether header is consistent with being from the same stream.

set_time(self, time, frame_rate=None)
Converts Time object to ref_epoch, seconds, and frame_nr.

For non-integer seconds, a frame rate is needed to calculate the ‘frame_nr’.

Parameters

time
[Time] The time to use for this header.

frame_rate
[Quantity, optional] For calculating ‘frame_nr’ from the fractional seconds.

tofile(self, fh)
Write VLBI frame header to filehandle.

update(self, *, verify=True, **kwargs)
Update the header by setting keywords or properties.

Here, any keywords matching header keys are applied first, and any remaining ones are used to set header
properties, in the order set by the class (in _properties).

Parameters

verify
[bool, optional] If True (default), verify integrity after updating.

**kwargs
Arguments used to set keywords and properties.

verify(self)
Verify that the length of the words is consistent.

Subclasses should override this to do more thorough checks.

5.4. Reference/API 45

http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

VDIFPayload

class baseband.vdif.VDIFPayload(words, header=None, nchan=1, bps=2, complex_data=False)
Bases: baseband.vlbi_base.payload.VLBIPayloadBase

Container for decoding and encoding VDIF payloads.

Parameters

words
[ndarray] Array containg LSB unsigned words (with the right size) that encode the payload.

header
[VDIFHeader] If given, used to infer the number of channels, bps, and whether the data are
complex.

nchan
[int, optional] Number of channels, used if header is not given. Default: 1.

bps
[int, optional] Bits per elementary sample, used if header is not given. Default: 2.

complex_data
[bool, optional] Whether the data are complex, used if header is not given. Default: False.

Attributes Summary

data Full decoded payload.
dtype Numeric type of the decoded data array.
nbytes Size of the payload in bytes.
ndim Number of dimensions of the decoded data array.
shape Shape of the decoded data array.
size Total number of component samples in the decoded

data array.

Methods Summary

fromdata(data[, header, bps, edv]) Encode data as payload, using header information.
fromfile(fh, header) Read payload from filehandle and decode it into data.
tofile(self, fh) Write payload to filehandle.

Attributes Documentation

data
Full decoded payload.

dtype
Numeric type of the decoded data array.

nbytes
Size of the payload in bytes.

ndim

46 Chapter 5. VDIF

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#False


baseband Documentation, Release 3.1.0

Number of dimensions of the decoded data array.

shape
Shape of the decoded data array.

size
Total number of component samples in the decoded data array.

Methods Documentation

classmethod fromdata(data, header=None, bps=2, edv=None)
Encode data as payload, using header information.

Parameters

data
[ndarray] Values to be encoded.

header
[VDIFHeader, optional] If given, used to infer the encoding, and to verify the number of
channels and whether the data are complex.

bps
[int, optional] Bits per elementary sample, used if header is not given. Default: 2.

edv
[int, optional] Should be given if header is not given and the payload is encoded as Mark
5 data (i.e., edv=0xab).

classmethod fromfile(fh, header)
Read payload from filehandle and decode it into data.

Parameters

fh
[filehandle] To read data from.

header
[VDIFHeader] Used to infer the payload size, number of channels, bits per sample, and
whether the data are complex.

tofile(self, fh)
Write payload to filehandle.

5.4. Reference/API 47

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


baseband Documentation, Release 3.1.0

Class Inheritance Diagram

VDIFFrameVLBIFrameBase

VDIFFrameSet

VDIFHeaderVLBIHeaderBase

VDIFPayloadVLBIPayloadBase

5.4.2 baseband.vdif.header Module

Definitions for VLBI VDIF Headers.

Implements a VDIFHeader class used to store header words, and decode/encode the information therein.

For the VDIF specification, see https://www.vlbi.org/vdif

Classes

VDIFHeader(words[, edv, verify]) VDIF Header, supporting different Extended Data Ver-
sions.

VDIFBaseHeader(words[, edv, verify]) Base for non-legacy VDIF headers that use 8 32-bit
words.

VDIFSampleRateHeader(words[, edv, verify]) Base for VDIF headers that include the sample rate
(EDV= 1, 3, 4).

VDIFLegacyHeader(words[, edv, verify]) Legacy VDIF header that uses only 4 32-bit words.
VDIFHeader0(words[, edv, verify]) VDIF Header for EDV=0.
VDIFHeader1(words[, edv, verify]) VDIF Header for EDV=1.
VDIFHeader2(words[, edv, verify]) VDIF Header for EDV=2.
VDIFHeader3(words[, edv, verify]) VDIF Header for EDV=3.
VDIFMark5BHeader(words[, edv, verify]) Mark 5B over VDIF (EDV=0xab).

48 Chapter 5. VDIF

https://www.vlbi.org/vdif


baseband Documentation, Release 3.1.0

VDIFHeader

class baseband.vdif.header.VDIFHeader(words, edv=None, verify=True, **kwargs)
Bases: baseband.vlbi_base.header.VLBIHeaderBase

VDIF Header, supporting different Extended Data Versions.

Will initialize a header instance appropriate for a given EDV. See https://vlbi.org/wp-content/uploads/2019/03/
VDIF_specification_Release_1.1.1.pdf

Parameters

words
[tuple of int, or None] Eight (or four for legacy VDIF) 32-bit unsigned int header words. If
None, set to a tuple of zeros for later initialisation.

edv
[int, False, or None, optional] Extended data version. If False, a legacy header is used. If
None (default), it is determined from the header words; hence, setting it explicitly is useful
mostly for a slight speed-up. (Subclasses can override this default with an _edv attribute.)

verify
[bool] Whether to do basic verification of integrity. Default: True.

Returns

header
[VDIFHeader subclass] As appropriate for the extended data version.

Attributes Summary

bps Bits per elementary sample.
edv VDIF Extended Data Version (EDV).
frame_nbytes Size of the frame in bytes.
mutable Whether the header can be modified.
nbytes Size of the header in bytes.
nchan Number of channels in the frame.
payload_nbytes Size of the payload in bytes.
samples_per_frame Number of complete samples in the frame.
station Station ID: two ASCII characters, or 16-bit int.
time Converts ref_epoch, seconds, and frame_nr to Time

object.

Methods Summary

copy(self) Create a mutable and independent copy of the header.
from_mark5b_header(mark5b_header, bps, . . . ) Construct an Mark5B over VDIF header

(EDV=0xab).
fromfile(fh[, edv, verify]) Read VDIF Header from file.
fromkeys(\*\*kwargs) Initialise a header from parsed values.
fromvalues([edv, verify]) Initialise a header from parsed values.

Continued on next page

5.4. Reference/API 49

https://vlbi.org/wp-content/uploads/2019/03/VDIF_specification_Release_1.1.1.pdf
https://vlbi.org/wp-content/uploads/2019/03/VDIF_specification_Release_1.1.1.pdf
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Table 13 – continued from previous page
get_time(self[, frame_rate]) Converts ref_epoch, seconds, and frame_nr to Time

object.
invariant_pattern([invariants]) Pattern and mask shared between headers of a type

or stream.
invariants() Set of keys of invariant header parts.
keys(self) All keys defined for this header.
same_stream(self, other) Whether header is consistent with being from the

same stream.
set_time(self, time[, frame_rate]) Converts Time object to ref_epoch, seconds, and

frame_nr.
tofile(self, fh) Write VLBI frame header to filehandle.
update(self, \*[, verify]) Update the header by setting keywords or properties.
verify(self) Verify that the length of the words is consistent.

Attributes Documentation

bps
Bits per elementary sample.

edv
VDIF Extended Data Version (EDV).

frame_nbytes
Size of the frame in bytes.

mutable
Whether the header can be modified.

nbytes
Size of the header in bytes.

nchan
Number of channels in the frame.

payload_nbytes
Size of the payload in bytes.

samples_per_frame
Number of complete samples in the frame.

station
Station ID: two ASCII characters, or 16-bit int.

time
Converts ref_epoch, seconds, and frame_nr to Time object.

Uses ‘ref_epoch’, which stores the number of half-years from 2000, and ‘seconds’. By default, it also
calculates the offset using the current frame number. For non-zero ‘frame_nr’, this requires the frame rate,
which is calculated from the sample rate in the header.

Parameters

frame_rate
[Quantity, optional] For non-zero ‘frame_nr’, this is required to calculate the correspond-
ing offset.

50 Chapter 5. VDIF

http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity


baseband Documentation, Release 3.1.0

Returns

time
[Time]

Methods Documentation

copy(self)
Create a mutable and independent copy of the header.

Keyword arguments can be passed on as needed by possible subclasses.

classmethod from_mark5b_header(mark5b_header, bps, nchan, **kwargs)
Construct an Mark5B over VDIF header (EDV=0xab).

See https://vlbi.org/wp-content/uploads/2019/03/vdif_extension_0xab.pdf

Note that the Mark 5B header does not encode the bits-per-sample and the number of channels used
in the payload, so these need to be given separately. A complete frame can be encapsulated with
from_mark5b_frame.

Parameters

mark5b_header
[Mark5BHeader] Used to set time, etc.

bps
[int] Bits per elementary sample.

nchan
[int] Number of channels carried in the Mark 5B payload.

**kwargs
Any further arguments. Strictly, none are necessary to create a valid VDIF header, but this
can be used to pass on, e.g., invalid_data.

classmethod fromfile(fh, edv=None, verify=True)
Read VDIF Header from file.

Parameters

fh
[filehandle] To read data from.

edv
[int, False, or None, optional] Extended data version. If False, a legacy header is used. If
None (default), it is determined from the header. (Given it explicitly is mostly useful for a
slight speed-up.)

verify
[bool, optional] Whether to do basic verification of integrity. Default: True.

classmethod fromkeys(**kwargs)
Initialise a header from parsed values.

Like fromvalues(), but without any interpretation of keywords.

Raises

5.4. Reference/API 51

http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://vlbi.org/wp-content/uploads/2019/03/vdif_extension_0xab.pdf
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

KeyError
[if not all keys required are pass in.]

classmethod fromvalues(edv=False, *, verify=True, **kwargs)
Initialise a header from parsed values.

Here, the parsed values must be given as keyword arguments, i.e., for any header = cls(<data>), cls.
fromvalues(**header) == header.

However, unlike for the fromkeys() class method, data can also be set using arguments named after
methods, such as bps and time.

Given defaults:

invalid_data : False legacy_mode : False vdif_version : 1 thread_id : 0 frame_nr : 0 sync_pattern :
0xACABFEED for EDV 1 and 3, 0xa5ea5 for EDV 2

Values set by other keyword arguments (if present):

bits_per_sample : from bps frame_length : from samples_per_frame or frame_nbytes lg2_nchan : from
nchan station_id : from station sampling_rate, sampling_unit : from sample_rate ref_epoch, seconds,
frame_nr : from time

Note that to set time to non-integer seconds one also needs to pass in frame_rate or sample_rate.

get_time(self, frame_rate=None)
Converts ref_epoch, seconds, and frame_nr to Time object.

Uses ‘ref_epoch’, which stores the number of half-years from 2000, and ‘seconds’. By default, it also
calculates the offset using the current frame number. For non-zero ‘frame_nr’, this requires the frame rate,
which is calculated from the sample rate in the header.

Parameters

frame_rate
[Quantity, optional] For non-zero ‘frame_nr’, this is required to calculate the correspond-
ing offset.

Returns

time
[Time]

classmethod invariant_pattern(invariants=None, **kwargs)
Pattern and mask shared between headers of a type or stream.

This is mostly for use inside locate_frames().

Parameters

invariants
[set of str, optional] Set of keys to header parts that are shared between all headers of a
given type or within a given stream/file. Default: from invariants().

**kwargs
Keyword arguments needed to instantiate an empty header. (Mostly for Mark 4).

Returns

52 Chapter 5. VDIF

https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#False
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time


baseband Documentation, Release 3.1.0

pattern
[list of int] The pattern that is shared between headers. If called on an instance, just the
header words; if called on a class, words with defaults for the relevant parts set.

mask
[list of int] For each entry in pattern a bit mask with bits set for the parts that are invariant.

classmethod invariants()
Set of keys of invariant header parts.

On the class, this returns keys of parts that are shared by all headers for the type, on an instance, those that
are shared with other headers in the same file.

If neither are defined, returns ‘sync_pattern’ if the header containts that key.

keys(self)
All keys defined for this header.

same_stream(self, other)
Whether header is consistent with being from the same stream.

set_time(self, time, frame_rate=None)
Converts Time object to ref_epoch, seconds, and frame_nr.

For non-integer seconds, a frame rate is needed to calculate the ‘frame_nr’.

Parameters

time
[Time] The time to use for this header.

frame_rate
[Quantity, optional] For calculating ‘frame_nr’ from the fractional seconds.

tofile(self, fh)
Write VLBI frame header to filehandle.

update(self, *, verify=True, **kwargs)
Update the header by setting keywords or properties.

Here, any keywords matching header keys are applied first, and any remaining ones are used to set header
properties, in the order set by the class (in _properties).

Parameters

verify
[bool, optional] If True (default), verify integrity after updating.

**kwargs
Arguments used to set keywords and properties.

verify(self)
Verify that the length of the words is consistent.

Subclasses should override this to do more thorough checks.

5.4. Reference/API 53

http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

VDIFBaseHeader

class baseband.vdif.header.VDIFBaseHeader(words, edv=None, verify=True, **kwargs)
Bases: baseband.vdif.header.VDIFHeader

Base for non-legacy VDIF headers that use 8 32-bit words.

Attributes Summary

bps Bits per elementary sample.
edv VDIF Extended Data Version (EDV).
frame_nbytes Size of the frame in bytes.
mutable Whether the header can be modified.
nbytes Size of the header in bytes.
nchan Number of channels in the frame.
payload_nbytes Size of the payload in bytes.
samples_per_frame Number of complete samples in the frame.
station Station ID: two ASCII characters, or 16-bit int.
time Converts ref_epoch, seconds, and frame_nr to Time

object.

Methods Summary

copy(self) Create a mutable and independent copy of the header.
from_mark5b_header(mark5b_header, bps, . . . ) Construct an Mark5B over VDIF header

(EDV=0xab).
fromfile(fh[, edv, verify]) Read VDIF Header from file.
fromkeys(\*\*kwargs) Initialise a header from parsed values.
fromvalues([edv, verify]) Initialise a header from parsed values.
get_time(self[, frame_rate]) Converts ref_epoch, seconds, and frame_nr to Time

object.
invariant_pattern([invariants]) Pattern and mask shared between headers of a type

or stream.
invariants() Set of keys of invariant header parts.
keys(self) All keys defined for this header.
same_stream(self, other) Whether header is consistent with being from the

same stream.
set_time(self, time[, frame_rate]) Converts Time object to ref_epoch, seconds, and

frame_nr.
tofile(self, fh) Write VLBI frame header to filehandle.
update(self, \*[, verify]) Update the header by setting keywords or properties.
verify(self) Basic checks of header integrity.

54 Chapter 5. VDIF



baseband Documentation, Release 3.1.0

Attributes Documentation

bps
Bits per elementary sample.

edv
VDIF Extended Data Version (EDV).

frame_nbytes
Size of the frame in bytes.

mutable
Whether the header can be modified.

nbytes
Size of the header in bytes.

nchan
Number of channels in the frame.

payload_nbytes
Size of the payload in bytes.

samples_per_frame
Number of complete samples in the frame.

station
Station ID: two ASCII characters, or 16-bit int.

time
Converts ref_epoch, seconds, and frame_nr to Time object.

Uses ‘ref_epoch’, which stores the number of half-years from 2000, and ‘seconds’. By default, it also
calculates the offset using the current frame number. For non-zero ‘frame_nr’, this requires the frame rate,
which is calculated from the sample rate in the header.

Parameters

frame_rate
[Quantity, optional] For non-zero ‘frame_nr’, this is required to calculate the correspond-
ing offset.

Returns

time
[Time]

Methods Documentation

copy(self)
Create a mutable and independent copy of the header.

Keyword arguments can be passed on as needed by possible subclasses.

classmethod from_mark5b_header(mark5b_header, bps, nchan, **kwargs)
Construct an Mark5B over VDIF header (EDV=0xab).

See https://vlbi.org/wp-content/uploads/2019/03/vdif_extension_0xab.pdf

5.4. Reference/API 55

http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://vlbi.org/wp-content/uploads/2019/03/vdif_extension_0xab.pdf


baseband Documentation, Release 3.1.0

Note that the Mark 5B header does not encode the bits-per-sample and the number of channels used
in the payload, so these need to be given separately. A complete frame can be encapsulated with
from_mark5b_frame.

Parameters

mark5b_header
[Mark5BHeader] Used to set time, etc.

bps
[int] Bits per elementary sample.

nchan
[int] Number of channels carried in the Mark 5B payload.

**kwargs
Any further arguments. Strictly, none are necessary to create a valid VDIF header, but this
can be used to pass on, e.g., invalid_data.

classmethod fromfile(fh, edv=None, verify=True)
Read VDIF Header from file.

Parameters

fh
[filehandle] To read data from.

edv
[int, False, or None, optional] Extended data version. If False, a legacy header is used. If
None (default), it is determined from the header. (Given it explicitly is mostly useful for a
slight speed-up.)

verify
[bool, optional] Whether to do basic verification of integrity. Default: True.

classmethod fromkeys(**kwargs)
Initialise a header from parsed values.

Like fromvalues(), but without any interpretation of keywords.

Raises

KeyError
[if not all keys required are pass in.]

classmethod fromvalues(edv=False, *, verify=True, **kwargs)
Initialise a header from parsed values.

Here, the parsed values must be given as keyword arguments, i.e., for any header = cls(<data>), cls.
fromvalues(**header) == header.

However, unlike for the fromkeys() class method, data can also be set using arguments named after
methods, such as bps and time.

Given defaults:

invalid_data : False legacy_mode : False vdif_version : 1 thread_id : 0 frame_nr : 0 sync_pattern :
0xACABFEED for EDV 1 and 3, 0xa5ea5 for EDV 2

Values set by other keyword arguments (if present):

56 Chapter 5. VDIF

https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#False


baseband Documentation, Release 3.1.0

bits_per_sample : from bps frame_length : from samples_per_frame or frame_nbytes lg2_nchan : from
nchan station_id : from station sampling_rate, sampling_unit : from sample_rate ref_epoch, seconds,
frame_nr : from time

Note that to set time to non-integer seconds one also needs to pass in frame_rate or sample_rate.

get_time(self, frame_rate=None)
Converts ref_epoch, seconds, and frame_nr to Time object.

Uses ‘ref_epoch’, which stores the number of half-years from 2000, and ‘seconds’. By default, it also
calculates the offset using the current frame number. For non-zero ‘frame_nr’, this requires the frame rate,
which is calculated from the sample rate in the header.

Parameters

frame_rate
[Quantity, optional] For non-zero ‘frame_nr’, this is required to calculate the correspond-
ing offset.

Returns

time
[Time]

classmethod invariant_pattern(invariants=None, **kwargs)
Pattern and mask shared between headers of a type or stream.

This is mostly for use inside locate_frames().

Parameters

invariants
[set of str, optional] Set of keys to header parts that are shared between all headers of a
given type or within a given stream/file. Default: from invariants().

**kwargs
Keyword arguments needed to instantiate an empty header. (Mostly for Mark 4).

Returns

pattern
[list of int] The pattern that is shared between headers. If called on an instance, just the
header words; if called on a class, words with defaults for the relevant parts set.

mask
[list of int] For each entry in pattern a bit mask with bits set for the parts that are invariant.

classmethod invariants()
Set of keys of invariant header parts.

On the class, this returns keys of parts that are shared by all headers for the type, on an instance, those that
are shared with other headers in the same file.

If neither are defined, returns ‘sync_pattern’ if the header containts that key.

keys(self)
All keys defined for this header.

same_stream(self, other)
Whether header is consistent with being from the same stream.

5.4. Reference/API 57

http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time


baseband Documentation, Release 3.1.0

set_time(self, time, frame_rate=None)
Converts Time object to ref_epoch, seconds, and frame_nr.

For non-integer seconds, a frame rate is needed to calculate the ‘frame_nr’.

Parameters

time
[Time] The time to use for this header.

frame_rate
[Quantity, optional] For calculating ‘frame_nr’ from the fractional seconds.

tofile(self, fh)
Write VLBI frame header to filehandle.

update(self, *, verify=True, **kwargs)
Update the header by setting keywords or properties.

Here, any keywords matching header keys are applied first, and any remaining ones are used to set header
properties, in the order set by the class (in _properties).

Parameters

verify
[bool, optional] If True (default), verify integrity after updating.

**kwargs
Arguments used to set keywords and properties.

verify(self)
Basic checks of header integrity.

VDIFSampleRateHeader

class baseband.vdif.header.VDIFSampleRateHeader(words, edv=None, verify=True, **kwargs)
Bases: baseband.vdif.header.VDIFBaseHeader

Base for VDIF headers that include the sample rate (EDV= 1, 3, 4).

Attributes Summary

bps Bits per elementary sample.
edv VDIF Extended Data Version (EDV).
frame_nbytes Size of the frame in bytes.
frame_rate Number of frames per second.
mutable Whether the header can be modified.
nbytes Size of the header in bytes.
nchan Number of channels in the frame.
payload_nbytes Size of the payload in bytes.
sample_rate Number of complete samples per second.
samples_per_frame Number of complete samples in the frame.
station Station ID: two ASCII characters, or 16-bit int.

Continued on next page

58 Chapter 5. VDIF

http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Table 16 – continued from previous page
time Converts ref_epoch, seconds, and frame_nr to Time

object.

Methods Summary

copy(self) Create a mutable and independent copy of the header.
from_mark5b_header(mark5b_header, bps, . . . ) Construct an Mark5B over VDIF header

(EDV=0xab).
fromfile(fh[, edv, verify]) Read VDIF Header from file.
fromkeys(\*\*kwargs) Initialise a header from parsed values.
fromvalues([edv, verify]) Initialise a header from parsed values.
get_time(self[, frame_rate]) Converts ref_epoch, seconds, and frame_nr to Time

object.
invariant_pattern([invariants]) Pattern and mask shared between headers of a type

or stream.
invariants() Set of keys of invariant header parts.
keys(self) All keys defined for this header.
same_stream(self, other) Whether header is consistent with being from the

same stream.
set_time(self, time[, frame_rate]) Converts Time object to ref_epoch, seconds, and

frame_nr.
tofile(self, fh) Write VLBI frame header to filehandle.
update(self, \*[, verify]) Update the header by setting keywords or properties.
verify(self) Basic checks of header integrity.

Attributes Documentation

bps
Bits per elementary sample.

edv
VDIF Extended Data Version (EDV).

frame_nbytes
Size of the frame in bytes.

frame_rate
Number of frames per second.

Assumes the ‘sampling_rate’ header field represents a per-channel sample rate for complex samples, or
half the sample rate for real ones.

mutable
Whether the header can be modified.

nbytes
Size of the header in bytes.

nchan
Number of channels in the frame.

payload_nbytes
Size of the payload in bytes.

5.4. Reference/API 59



baseband Documentation, Release 3.1.0

sample_rate
Number of complete samples per second.

Assumes the ‘sampling_rate’ header field represents a per-channel sample rate for complex samples, or
half the sample rate for real ones.

samples_per_frame
Number of complete samples in the frame.

station
Station ID: two ASCII characters, or 16-bit int.

time
Converts ref_epoch, seconds, and frame_nr to Time object.

Uses ‘ref_epoch’, which stores the number of half-years from 2000, and ‘seconds’. By default, it also
calculates the offset using the current frame number. For non-zero ‘frame_nr’, this requires the frame rate,
which is calculated from the sample rate in the header. The latter can also be explicitly passed on.

Parameters

frame_rate
[Quantity, optional] For non-zero ‘frame_nr’, this is used to calculate the corresponding
offset. If not given, the frame rate from the header is used (if it is non-zero).

Returns

time
[Time]

Methods Documentation

copy(self)
Create a mutable and independent copy of the header.

Keyword arguments can be passed on as needed by possible subclasses.

classmethod from_mark5b_header(mark5b_header, bps, nchan, **kwargs)
Construct an Mark5B over VDIF header (EDV=0xab).

See https://vlbi.org/wp-content/uploads/2019/03/vdif_extension_0xab.pdf

Note that the Mark 5B header does not encode the bits-per-sample and the number of channels used
in the payload, so these need to be given separately. A complete frame can be encapsulated with
from_mark5b_frame.

Parameters

mark5b_header
[Mark5BHeader] Used to set time, etc.

bps
[int] Bits per elementary sample.

nchan
[int] Number of channels carried in the Mark 5B payload.

60 Chapter 5. VDIF

http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://vlbi.org/wp-content/uploads/2019/03/vdif_extension_0xab.pdf


baseband Documentation, Release 3.1.0

**kwargs
Any further arguments. Strictly, none are necessary to create a valid VDIF header, but this
can be used to pass on, e.g., invalid_data.

classmethod fromfile(fh, edv=None, verify=True)
Read VDIF Header from file.

Parameters

fh
[filehandle] To read data from.

edv
[int, False, or None, optional] Extended data version. If False, a legacy header is used. If
None (default), it is determined from the header. (Given it explicitly is mostly useful for a
slight speed-up.)

verify
[bool, optional] Whether to do basic verification of integrity. Default: True.

classmethod fromkeys(**kwargs)
Initialise a header from parsed values.

Like fromvalues(), but without any interpretation of keywords.

Raises

KeyError
[if not all keys required are pass in.]

classmethod fromvalues(edv=False, *, verify=True, **kwargs)
Initialise a header from parsed values.

Here, the parsed values must be given as keyword arguments, i.e., for any header = cls(<data>), cls.
fromvalues(**header) == header.

However, unlike for the fromkeys() class method, data can also be set using arguments named after
methods, such as bps and time.

Given defaults:

invalid_data : False legacy_mode : False vdif_version : 1 thread_id : 0 frame_nr : 0 sync_pattern :
0xACABFEED for EDV 1 and 3, 0xa5ea5 for EDV 2

Values set by other keyword arguments (if present):

bits_per_sample : from bps frame_length : from samples_per_frame or frame_nbytes lg2_nchan : from
nchan station_id : from station sampling_rate, sampling_unit : from sample_rate ref_epoch, seconds,
frame_nr : from time

Note that to set time to non-integer seconds one also needs to pass in frame_rate or sample_rate.

get_time(self, frame_rate=None)
Converts ref_epoch, seconds, and frame_nr to Time object.

Uses ‘ref_epoch’, which stores the number of half-years from 2000, and ‘seconds’. By default, it also
calculates the offset using the current frame number. For non-zero ‘frame_nr’, this requires the frame rate,
which is calculated from the sample rate in the header. The latter can also be explicitly passed on.

Parameters

5.4. Reference/API 61

https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#False


baseband Documentation, Release 3.1.0

frame_rate
[Quantity, optional] For non-zero ‘frame_nr’, this is used to calculate the corresponding
offset. If not given, the frame rate from the header is used (if it is non-zero).

Returns

time
[Time]

classmethod invariant_pattern(invariants=None, **kwargs)
Pattern and mask shared between headers of a type or stream.

This is mostly for use inside locate_frames().

Parameters

invariants
[set of str, optional] Set of keys to header parts that are shared between all headers of a
given type or within a given stream/file. Default: from invariants().

**kwargs
Keyword arguments needed to instantiate an empty header. (Mostly for Mark 4).

Returns

pattern
[list of int] The pattern that is shared between headers. If called on an instance, just the
header words; if called on a class, words with defaults for the relevant parts set.

mask
[list of int] For each entry in pattern a bit mask with bits set for the parts that are invariant.

classmethod invariants()
Set of keys of invariant header parts.

On the class, this returns keys of parts that are shared by all headers for the type, on an instance, those that
are shared with other headers in the same file.

If neither are defined, returns ‘sync_pattern’ if the header containts that key.

keys(self)
All keys defined for this header.

same_stream(self, other)
Whether header is consistent with being from the same stream.

set_time(self, time, frame_rate=None)
Converts Time object to ref_epoch, seconds, and frame_nr.

Parameters

time
[Time] The time to use for this header.

frame_rate
[Quantity, optional] For calculating ‘frame_nr’ from the fractional seconds. If not given,
the frame rate from the header is used (if it is non-zero).

tofile(self, fh)
Write VLBI frame header to filehandle.

62 Chapter 5. VDIF

http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity


baseband Documentation, Release 3.1.0

update(self, *, verify=True, **kwargs)
Update the header by setting keywords or properties.

Here, any keywords matching header keys are applied first, and any remaining ones are used to set header
properties, in the order set by the class (in _properties).

Parameters

verify
[bool, optional] If True (default), verify integrity after updating.

**kwargs
Arguments used to set keywords and properties.

verify(self)
Basic checks of header integrity.

VDIFLegacyHeader

class baseband.vdif.header.VDIFLegacyHeader(words, edv=None, verify=True, **kwargs)
Bases: baseband.vdif.header.VDIFHeader

Legacy VDIF header that uses only 4 32-bit words.

See Section 6 of https://vlbi.org/wp-content/uploads/2019/03/VDIF_specification_Release_1.1.1.pdf

Attributes Summary

bps Bits per elementary sample.
edv VDIF Extended Data Version (EDV).
frame_nbytes Size of the frame in bytes.
mutable Whether the header can be modified.
nbytes Size of the header in bytes.
nchan Number of channels in the frame.
payload_nbytes Size of the payload in bytes.
samples_per_frame Number of complete samples in the frame.
station Station ID: two ASCII characters, or 16-bit int.
time Converts ref_epoch, seconds, and frame_nr to Time

object.

Methods Summary

copy(self) Create a mutable and independent copy of the header.
from_mark5b_header(mark5b_header, bps, . . . ) Construct an Mark5B over VDIF header

(EDV=0xab).
fromfile(fh[, edv, verify]) Read VDIF Header from file.
fromkeys(\*\*kwargs) Initialise a header from parsed values.
fromvalues([edv, verify]) Initialise a header from parsed values.
get_time(self[, frame_rate]) Converts ref_epoch, seconds, and frame_nr to Time

object.
Continued on next page

5.4. Reference/API 63

https://docs.python.org/3/library/constants.html#True
https://vlbi.org/wp-content/uploads/2019/03/VDIF_specification_Release_1.1.1.pdf


baseband Documentation, Release 3.1.0

Table 19 – continued from previous page
invariant_pattern([invariants]) Pattern and mask shared between headers of a type

or stream.
invariants() Set of keys of invariant header parts.
keys(self) All keys defined for this header.
same_stream(self, other) Whether header is consistent with being from the

same stream.
set_time(self, time[, frame_rate]) Converts Time object to ref_epoch, seconds, and

frame_nr.
tofile(self, fh) Write VLBI frame header to filehandle.
update(self, \*[, verify]) Update the header by setting keywords or properties.
verify(self) Basic checks of header integrity.

Attributes Documentation

bps
Bits per elementary sample.

edv
VDIF Extended Data Version (EDV).

frame_nbytes
Size of the frame in bytes.

mutable
Whether the header can be modified.

nbytes
Size of the header in bytes.

nchan
Number of channels in the frame.

payload_nbytes
Size of the payload in bytes.

samples_per_frame
Number of complete samples in the frame.

station
Station ID: two ASCII characters, or 16-bit int.

time
Converts ref_epoch, seconds, and frame_nr to Time object.

Uses ‘ref_epoch’, which stores the number of half-years from 2000, and ‘seconds’. By default, it also
calculates the offset using the current frame number. For non-zero ‘frame_nr’, this requires the frame rate,
which is calculated from the sample rate in the header.

Parameters

frame_rate
[Quantity, optional] For non-zero ‘frame_nr’, this is required to calculate the correspond-
ing offset.

Returns

64 Chapter 5. VDIF

http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity


baseband Documentation, Release 3.1.0

time
[Time]

Methods Documentation

copy(self)
Create a mutable and independent copy of the header.

Keyword arguments can be passed on as needed by possible subclasses.

classmethod from_mark5b_header(mark5b_header, bps, nchan, **kwargs)
Construct an Mark5B over VDIF header (EDV=0xab).

See https://vlbi.org/wp-content/uploads/2019/03/vdif_extension_0xab.pdf

Note that the Mark 5B header does not encode the bits-per-sample and the number of channels used
in the payload, so these need to be given separately. A complete frame can be encapsulated with
from_mark5b_frame.

Parameters

mark5b_header
[Mark5BHeader] Used to set time, etc.

bps
[int] Bits per elementary sample.

nchan
[int] Number of channels carried in the Mark 5B payload.

**kwargs
Any further arguments. Strictly, none are necessary to create a valid VDIF header, but this
can be used to pass on, e.g., invalid_data.

classmethod fromfile(fh, edv=None, verify=True)
Read VDIF Header from file.

Parameters

fh
[filehandle] To read data from.

edv
[int, False, or None, optional] Extended data version. If False, a legacy header is used. If
None (default), it is determined from the header. (Given it explicitly is mostly useful for a
slight speed-up.)

verify
[bool, optional] Whether to do basic verification of integrity. Default: True.

classmethod fromkeys(**kwargs)
Initialise a header from parsed values.

Like fromvalues(), but without any interpretation of keywords.

Raises

KeyError
[if not all keys required are pass in.]

5.4. Reference/API 65

http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://vlbi.org/wp-content/uploads/2019/03/vdif_extension_0xab.pdf
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

classmethod fromvalues(edv=False, *, verify=True, **kwargs)
Initialise a header from parsed values.

Here, the parsed values must be given as keyword arguments, i.e., for any header = cls(<data>), cls.
fromvalues(**header) == header.

However, unlike for the fromkeys() class method, data can also be set using arguments named after
methods, such as bps and time.

Given defaults:

invalid_data : False legacy_mode : False vdif_version : 1 thread_id : 0 frame_nr : 0 sync_pattern :
0xACABFEED for EDV 1 and 3, 0xa5ea5 for EDV 2

Values set by other keyword arguments (if present):

bits_per_sample : from bps frame_length : from samples_per_frame or frame_nbytes lg2_nchan : from
nchan station_id : from station sampling_rate, sampling_unit : from sample_rate ref_epoch, seconds,
frame_nr : from time

Note that to set time to non-integer seconds one also needs to pass in frame_rate or sample_rate.

get_time(self, frame_rate=None)
Converts ref_epoch, seconds, and frame_nr to Time object.

Uses ‘ref_epoch’, which stores the number of half-years from 2000, and ‘seconds’. By default, it also
calculates the offset using the current frame number. For non-zero ‘frame_nr’, this requires the frame rate,
which is calculated from the sample rate in the header.

Parameters

frame_rate
[Quantity, optional] For non-zero ‘frame_nr’, this is required to calculate the correspond-
ing offset.

Returns

time
[Time]

classmethod invariant_pattern(invariants=None, **kwargs)
Pattern and mask shared between headers of a type or stream.

This is mostly for use inside locate_frames().

Parameters

invariants
[set of str, optional] Set of keys to header parts that are shared between all headers of a
given type or within a given stream/file. Default: from invariants().

**kwargs
Keyword arguments needed to instantiate an empty header. (Mostly for Mark 4).

Returns

pattern
[list of int] The pattern that is shared between headers. If called on an instance, just the
header words; if called on a class, words with defaults for the relevant parts set.

66 Chapter 5. VDIF

https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#False
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time


baseband Documentation, Release 3.1.0

mask
[list of int] For each entry in pattern a bit mask with bits set for the parts that are invariant.

classmethod invariants()
Set of keys of invariant header parts.

On the class, this returns keys of parts that are shared by all headers for the type, on an instance, those that
are shared with other headers in the same file.

If neither are defined, returns ‘sync_pattern’ if the header containts that key.

keys(self)
All keys defined for this header.

same_stream(self, other)
Whether header is consistent with being from the same stream.

set_time(self, time, frame_rate=None)
Converts Time object to ref_epoch, seconds, and frame_nr.

For non-integer seconds, a frame rate is needed to calculate the ‘frame_nr’.

Parameters

time
[Time] The time to use for this header.

frame_rate
[Quantity, optional] For calculating ‘frame_nr’ from the fractional seconds.

tofile(self, fh)
Write VLBI frame header to filehandle.

update(self, *, verify=True, **kwargs)
Update the header by setting keywords or properties.

Here, any keywords matching header keys are applied first, and any remaining ones are used to set header
properties, in the order set by the class (in _properties).

Parameters

verify
[bool, optional] If True (default), verify integrity after updating.

**kwargs
Arguments used to set keywords and properties.

verify(self)
Basic checks of header integrity.

5.4. Reference/API 67

http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

VDIFHeader0

class baseband.vdif.header.VDIFHeader0(words, edv=None, verify=True, **kwargs)
Bases: baseband.vdif.header.VDIFBaseHeader

VDIF Header for EDV=0.

EDV=0 implies the extended user data fields are not used.

Attributes Summary

bps Bits per elementary sample.
edv VDIF Extended Data Version (EDV).
frame_nbytes Size of the frame in bytes.
mutable Whether the header can be modified.
nbytes Size of the header in bytes.
nchan Number of channels in the frame.
payload_nbytes Size of the payload in bytes.
samples_per_frame Number of complete samples in the frame.
station Station ID: two ASCII characters, or 16-bit int.
time Converts ref_epoch, seconds, and frame_nr to Time

object.

Methods Summary

copy(self) Create a mutable and independent copy of the header.
from_mark5b_header(mark5b_header, bps, . . . ) Construct an Mark5B over VDIF header

(EDV=0xab).
fromfile(fh[, edv, verify]) Read VDIF Header from file.
fromkeys(\*\*kwargs) Initialise a header from parsed values.
fromvalues([edv, verify]) Initialise a header from parsed values.
get_time(self[, frame_rate]) Converts ref_epoch, seconds, and frame_nr to Time

object.
invariant_pattern([invariants]) Pattern and mask shared between headers of a type

or stream.
invariants() Set of keys of invariant header parts.
keys(self) All keys defined for this header.
same_stream(self, other) Whether header is consistent with being from the

same stream.
set_time(self, time[, frame_rate]) Converts Time object to ref_epoch, seconds, and

frame_nr.
tofile(self, fh) Write VLBI frame header to filehandle.
update(self, \*[, verify]) Update the header by setting keywords or properties.
verify(self) Basic checks of header integrity.

68 Chapter 5. VDIF



baseband Documentation, Release 3.1.0

Attributes Documentation

bps
Bits per elementary sample.

edv
VDIF Extended Data Version (EDV).

frame_nbytes
Size of the frame in bytes.

mutable
Whether the header can be modified.

nbytes
Size of the header in bytes.

nchan
Number of channels in the frame.

payload_nbytes
Size of the payload in bytes.

samples_per_frame
Number of complete samples in the frame.

station
Station ID: two ASCII characters, or 16-bit int.

time
Converts ref_epoch, seconds, and frame_nr to Time object.

Uses ‘ref_epoch’, which stores the number of half-years from 2000, and ‘seconds’. By default, it also
calculates the offset using the current frame number. For non-zero ‘frame_nr’, this requires the frame rate,
which is calculated from the sample rate in the header.

Parameters

frame_rate
[Quantity, optional] For non-zero ‘frame_nr’, this is required to calculate the correspond-
ing offset.

Returns

time
[Time]

Methods Documentation

copy(self)
Create a mutable and independent copy of the header.

Keyword arguments can be passed on as needed by possible subclasses.

classmethod from_mark5b_header(mark5b_header, bps, nchan, **kwargs)
Construct an Mark5B over VDIF header (EDV=0xab).

See https://vlbi.org/wp-content/uploads/2019/03/vdif_extension_0xab.pdf

5.4. Reference/API 69

http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://vlbi.org/wp-content/uploads/2019/03/vdif_extension_0xab.pdf


baseband Documentation, Release 3.1.0

Note that the Mark 5B header does not encode the bits-per-sample and the number of channels used
in the payload, so these need to be given separately. A complete frame can be encapsulated with
from_mark5b_frame.

Parameters

mark5b_header
[Mark5BHeader] Used to set time, etc.

bps
[int] Bits per elementary sample.

nchan
[int] Number of channels carried in the Mark 5B payload.

**kwargs
Any further arguments. Strictly, none are necessary to create a valid VDIF header, but this
can be used to pass on, e.g., invalid_data.

classmethod fromfile(fh, edv=None, verify=True)
Read VDIF Header from file.

Parameters

fh
[filehandle] To read data from.

edv
[int, False, or None, optional] Extended data version. If False, a legacy header is used. If
None (default), it is determined from the header. (Given it explicitly is mostly useful for a
slight speed-up.)

verify
[bool, optional] Whether to do basic verification of integrity. Default: True.

classmethod fromkeys(**kwargs)
Initialise a header from parsed values.

Like fromvalues(), but without any interpretation of keywords.

Raises

KeyError
[if not all keys required are pass in.]

classmethod fromvalues(edv=False, *, verify=True, **kwargs)
Initialise a header from parsed values.

Here, the parsed values must be given as keyword arguments, i.e., for any header = cls(<data>), cls.
fromvalues(**header) == header.

However, unlike for the fromkeys() class method, data can also be set using arguments named after
methods, such as bps and time.

Given defaults:

invalid_data : False legacy_mode : False vdif_version : 1 thread_id : 0 frame_nr : 0 sync_pattern :
0xACABFEED for EDV 1 and 3, 0xa5ea5 for EDV 2

Values set by other keyword arguments (if present):

70 Chapter 5. VDIF

https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#False


baseband Documentation, Release 3.1.0

bits_per_sample : from bps frame_length : from samples_per_frame or frame_nbytes lg2_nchan : from
nchan station_id : from station sampling_rate, sampling_unit : from sample_rate ref_epoch, seconds,
frame_nr : from time

Note that to set time to non-integer seconds one also needs to pass in frame_rate or sample_rate.

get_time(self, frame_rate=None)
Converts ref_epoch, seconds, and frame_nr to Time object.

Uses ‘ref_epoch’, which stores the number of half-years from 2000, and ‘seconds’. By default, it also
calculates the offset using the current frame number. For non-zero ‘frame_nr’, this requires the frame rate,
which is calculated from the sample rate in the header.

Parameters

frame_rate
[Quantity, optional] For non-zero ‘frame_nr’, this is required to calculate the correspond-
ing offset.

Returns

time
[Time]

classmethod invariant_pattern(invariants=None, **kwargs)
Pattern and mask shared between headers of a type or stream.

This is mostly for use inside locate_frames().

Parameters

invariants
[set of str, optional] Set of keys to header parts that are shared between all headers of a
given type or within a given stream/file. Default: from invariants().

**kwargs
Keyword arguments needed to instantiate an empty header. (Mostly for Mark 4).

Returns

pattern
[list of int] The pattern that is shared between headers. If called on an instance, just the
header words; if called on a class, words with defaults for the relevant parts set.

mask
[list of int] For each entry in pattern a bit mask with bits set for the parts that are invariant.

classmethod invariants()
Set of keys of invariant header parts.

On the class, this returns keys of parts that are shared by all headers for the type, on an instance, those that
are shared with other headers in the same file.

If neither are defined, returns ‘sync_pattern’ if the header containts that key.

keys(self)
All keys defined for this header.

same_stream(self, other)
Whether header is consistent with being from the same stream.

5.4. Reference/API 71

http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time


baseband Documentation, Release 3.1.0

set_time(self, time, frame_rate=None)
Converts Time object to ref_epoch, seconds, and frame_nr.

For non-integer seconds, a frame rate is needed to calculate the ‘frame_nr’.

Parameters

time
[Time] The time to use for this header.

frame_rate
[Quantity, optional] For calculating ‘frame_nr’ from the fractional seconds.

tofile(self, fh)
Write VLBI frame header to filehandle.

update(self, *, verify=True, **kwargs)
Update the header by setting keywords or properties.

Here, any keywords matching header keys are applied first, and any remaining ones are used to set header
properties, in the order set by the class (in _properties).

Parameters

verify
[bool, optional] If True (default), verify integrity after updating.

**kwargs
Arguments used to set keywords and properties.

verify(self)
Basic checks of header integrity.

VDIFHeader1

class baseband.vdif.header.VDIFHeader1(words, edv=None, verify=True, **kwargs)
Bases: baseband.vdif.header.VDIFSampleRateHeader

VDIF Header for EDV=1.

See https://vlbi.org/wp-content/uploads/2019/03/vdif_extension_0x01.pdf

Attributes Summary

bps Bits per elementary sample.
edv VDIF Extended Data Version (EDV).
frame_nbytes Size of the frame in bytes.
frame_rate Number of frames per second.
mutable Whether the header can be modified.
nbytes Size of the header in bytes.
nchan Number of channels in the frame.
payload_nbytes Size of the payload in bytes.
sample_rate Number of complete samples per second.
samples_per_frame Number of complete samples in the frame.
station Station ID: two ASCII characters, or 16-bit int.

Continued on next page

72 Chapter 5. VDIF

http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
https://docs.python.org/3/library/constants.html#True
https://vlbi.org/wp-content/uploads/2019/03/vdif_extension_0x01.pdf


baseband Documentation, Release 3.1.0

Table 22 – continued from previous page
time Converts ref_epoch, seconds, and frame_nr to Time

object.

Methods Summary

copy(self) Create a mutable and independent copy of the header.
from_mark5b_header(mark5b_header, bps, . . . ) Construct an Mark5B over VDIF header

(EDV=0xab).
fromfile(fh[, edv, verify]) Read VDIF Header from file.
fromkeys(\*\*kwargs) Initialise a header from parsed values.
fromvalues([edv, verify]) Initialise a header from parsed values.
get_time(self[, frame_rate]) Converts ref_epoch, seconds, and frame_nr to Time

object.
invariant_pattern([invariants]) Pattern and mask shared between headers of a type

or stream.
invariants() Set of keys of invariant header parts.
keys(self) All keys defined for this header.
same_stream(self, other) Whether header is consistent with being from the

same stream.
set_time(self, time[, frame_rate]) Converts Time object to ref_epoch, seconds, and

frame_nr.
tofile(self, fh) Write VLBI frame header to filehandle.
update(self, \*[, verify]) Update the header by setting keywords or properties.
verify(self) Basic checks of header integrity.

Attributes Documentation

bps
Bits per elementary sample.

edv
VDIF Extended Data Version (EDV).

frame_nbytes
Size of the frame in bytes.

frame_rate
Number of frames per second.

Assumes the ‘sampling_rate’ header field represents a per-channel sample rate for complex samples, or
half the sample rate for real ones.

mutable
Whether the header can be modified.

nbytes
Size of the header in bytes.

nchan
Number of channels in the frame.

payload_nbytes
Size of the payload in bytes.

5.4. Reference/API 73



baseband Documentation, Release 3.1.0

sample_rate
Number of complete samples per second.

Assumes the ‘sampling_rate’ header field represents a per-channel sample rate for complex samples, or
half the sample rate for real ones.

samples_per_frame
Number of complete samples in the frame.

station
Station ID: two ASCII characters, or 16-bit int.

time
Converts ref_epoch, seconds, and frame_nr to Time object.

Uses ‘ref_epoch’, which stores the number of half-years from 2000, and ‘seconds’. By default, it also
calculates the offset using the current frame number. For non-zero ‘frame_nr’, this requires the frame rate,
which is calculated from the sample rate in the header. The latter can also be explicitly passed on.

Parameters

frame_rate
[Quantity, optional] For non-zero ‘frame_nr’, this is used to calculate the corresponding
offset. If not given, the frame rate from the header is used (if it is non-zero).

Returns

time
[Time]

Methods Documentation

copy(self)
Create a mutable and independent copy of the header.

Keyword arguments can be passed on as needed by possible subclasses.

classmethod from_mark5b_header(mark5b_header, bps, nchan, **kwargs)
Construct an Mark5B over VDIF header (EDV=0xab).

See https://vlbi.org/wp-content/uploads/2019/03/vdif_extension_0xab.pdf

Note that the Mark 5B header does not encode the bits-per-sample and the number of channels used
in the payload, so these need to be given separately. A complete frame can be encapsulated with
from_mark5b_frame.

Parameters

mark5b_header
[Mark5BHeader] Used to set time, etc.

bps
[int] Bits per elementary sample.

nchan
[int] Number of channels carried in the Mark 5B payload.

74 Chapter 5. VDIF

http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://vlbi.org/wp-content/uploads/2019/03/vdif_extension_0xab.pdf


baseband Documentation, Release 3.1.0

**kwargs
Any further arguments. Strictly, none are necessary to create a valid VDIF header, but this
can be used to pass on, e.g., invalid_data.

classmethod fromfile(fh, edv=None, verify=True)
Read VDIF Header from file.

Parameters

fh
[filehandle] To read data from.

edv
[int, False, or None, optional] Extended data version. If False, a legacy header is used. If
None (default), it is determined from the header. (Given it explicitly is mostly useful for a
slight speed-up.)

verify
[bool, optional] Whether to do basic verification of integrity. Default: True.

classmethod fromkeys(**kwargs)
Initialise a header from parsed values.

Like fromvalues(), but without any interpretation of keywords.

Raises

KeyError
[if not all keys required are pass in.]

classmethod fromvalues(edv=False, *, verify=True, **kwargs)
Initialise a header from parsed values.

Here, the parsed values must be given as keyword arguments, i.e., for any header = cls(<data>), cls.
fromvalues(**header) == header.

However, unlike for the fromkeys() class method, data can also be set using arguments named after
methods, such as bps and time.

Given defaults:

invalid_data : False legacy_mode : False vdif_version : 1 thread_id : 0 frame_nr : 0 sync_pattern :
0xACABFEED for EDV 1 and 3, 0xa5ea5 for EDV 2

Values set by other keyword arguments (if present):

bits_per_sample : from bps frame_length : from samples_per_frame or frame_nbytes lg2_nchan : from
nchan station_id : from station sampling_rate, sampling_unit : from sample_rate ref_epoch, seconds,
frame_nr : from time

Note that to set time to non-integer seconds one also needs to pass in frame_rate or sample_rate.

get_time(self, frame_rate=None)
Converts ref_epoch, seconds, and frame_nr to Time object.

Uses ‘ref_epoch’, which stores the number of half-years from 2000, and ‘seconds’. By default, it also
calculates the offset using the current frame number. For non-zero ‘frame_nr’, this requires the frame rate,
which is calculated from the sample rate in the header. The latter can also be explicitly passed on.

Parameters

5.4. Reference/API 75

https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#False


baseband Documentation, Release 3.1.0

frame_rate
[Quantity, optional] For non-zero ‘frame_nr’, this is used to calculate the corresponding
offset. If not given, the frame rate from the header is used (if it is non-zero).

Returns

time
[Time]

classmethod invariant_pattern(invariants=None, **kwargs)
Pattern and mask shared between headers of a type or stream.

This is mostly for use inside locate_frames().

Parameters

invariants
[set of str, optional] Set of keys to header parts that are shared between all headers of a
given type or within a given stream/file. Default: from invariants().

**kwargs
Keyword arguments needed to instantiate an empty header. (Mostly for Mark 4).

Returns

pattern
[list of int] The pattern that is shared between headers. If called on an instance, just the
header words; if called on a class, words with defaults for the relevant parts set.

mask
[list of int] For each entry in pattern a bit mask with bits set for the parts that are invariant.

classmethod invariants()
Set of keys of invariant header parts.

On the class, this returns keys of parts that are shared by all headers for the type, on an instance, those that
are shared with other headers in the same file.

If neither are defined, returns ‘sync_pattern’ if the header containts that key.

keys(self)
All keys defined for this header.

same_stream(self, other)
Whether header is consistent with being from the same stream.

set_time(self, time, frame_rate=None)
Converts Time object to ref_epoch, seconds, and frame_nr.

Parameters

time
[Time] The time to use for this header.

frame_rate
[Quantity, optional] For calculating ‘frame_nr’ from the fractional seconds. If not given,
the frame rate from the header is used (if it is non-zero).

tofile(self, fh)
Write VLBI frame header to filehandle.

76 Chapter 5. VDIF

http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity


baseband Documentation, Release 3.1.0

update(self, *, verify=True, **kwargs)
Update the header by setting keywords or properties.

Here, any keywords matching header keys are applied first, and any remaining ones are used to set header
properties, in the order set by the class (in _properties).

Parameters

verify
[bool, optional] If True (default), verify integrity after updating.

**kwargs
Arguments used to set keywords and properties.

verify(self)
Basic checks of header integrity.

VDIFHeader2

class baseband.vdif.header.VDIFHeader2(words, edv=None, verify=True, **kwargs)
Bases: baseband.vdif.header.VDIFBaseHeader

VDIF Header for EDV=2.

See https://vlbi.org/wp-content/uploads/2019/03/alma-vdif-edv.pdf

Notes

This header is untested. It may need to have subclasses, based on possible different sync values.

Attributes Summary

bps Bits per elementary sample.
edv VDIF Extended Data Version (EDV).
frame_nbytes Size of the frame in bytes.
mutable Whether the header can be modified.
nbytes Size of the header in bytes.
nchan Number of channels in the frame.
payload_nbytes Size of the payload in bytes.
samples_per_frame Number of complete samples in the frame.
station Station ID: two ASCII characters, or 16-bit int.
time Converts ref_epoch, seconds, and frame_nr to Time

object.

5.4. Reference/API 77

https://docs.python.org/3/library/constants.html#True
https://vlbi.org/wp-content/uploads/2019/03/alma-vdif-edv.pdf


baseband Documentation, Release 3.1.0

Methods Summary

copy(self) Create a mutable and independent copy of the header.
from_mark5b_header(mark5b_header, bps, . . . ) Construct an Mark5B over VDIF header

(EDV=0xab).
fromfile(fh[, edv, verify]) Read VDIF Header from file.
fromkeys(\*\*kwargs) Initialise a header from parsed values.
fromvalues([edv, verify]) Initialise a header from parsed values.
get_time(self[, frame_rate]) Converts ref_epoch, seconds, and frame_nr to Time

object.
invariant_pattern([invariants]) Pattern and mask shared between headers of a type

or stream.
invariants() Set of keys of invariant header parts.
keys(self) All keys defined for this header.
same_stream(self, other) Whether header is consistent with being from the

same stream.
set_time(self, time[, frame_rate]) Converts Time object to ref_epoch, seconds, and

frame_nr.
tofile(self, fh) Write VLBI frame header to filehandle.
update(self, \*[, verify]) Update the header by setting keywords or properties.
verify(self) Basic checks of header integrity.

Attributes Documentation

bps
Bits per elementary sample.

edv
VDIF Extended Data Version (EDV).

frame_nbytes
Size of the frame in bytes.

mutable
Whether the header can be modified.

nbytes
Size of the header in bytes.

nchan
Number of channels in the frame.

payload_nbytes
Size of the payload in bytes.

samples_per_frame
Number of complete samples in the frame.

station
Station ID: two ASCII characters, or 16-bit int.

time
Converts ref_epoch, seconds, and frame_nr to Time object.

Uses ‘ref_epoch’, which stores the number of half-years from 2000, and ‘seconds’. By default, it also
calculates the offset using the current frame number. For non-zero ‘frame_nr’, this requires the frame rate,
which is calculated from the sample rate in the header.

78 Chapter 5. VDIF



baseband Documentation, Release 3.1.0

Parameters

frame_rate
[Quantity, optional] For non-zero ‘frame_nr’, this is required to calculate the correspond-
ing offset.

Returns

time
[Time]

Methods Documentation

copy(self)
Create a mutable and independent copy of the header.

Keyword arguments can be passed on as needed by possible subclasses.

classmethod from_mark5b_header(mark5b_header, bps, nchan, **kwargs)
Construct an Mark5B over VDIF header (EDV=0xab).

See https://vlbi.org/wp-content/uploads/2019/03/vdif_extension_0xab.pdf

Note that the Mark 5B header does not encode the bits-per-sample and the number of channels used
in the payload, so these need to be given separately. A complete frame can be encapsulated with
from_mark5b_frame.

Parameters

mark5b_header
[Mark5BHeader] Used to set time, etc.

bps
[int] Bits per elementary sample.

nchan
[int] Number of channels carried in the Mark 5B payload.

**kwargs
Any further arguments. Strictly, none are necessary to create a valid VDIF header, but this
can be used to pass on, e.g., invalid_data.

classmethod fromfile(fh, edv=None, verify=True)
Read VDIF Header from file.

Parameters

fh
[filehandle] To read data from.

edv
[int, False, or None, optional] Extended data version. If False, a legacy header is used. If
None (default), it is determined from the header. (Given it explicitly is mostly useful for a
slight speed-up.)

verify
[bool, optional] Whether to do basic verification of integrity. Default: True.

5.4. Reference/API 79

http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://vlbi.org/wp-content/uploads/2019/03/vdif_extension_0xab.pdf
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

classmethod fromkeys(**kwargs)
Initialise a header from parsed values.

Like fromvalues(), but without any interpretation of keywords.

Raises

KeyError
[if not all keys required are pass in.]

classmethod fromvalues(edv=False, *, verify=True, **kwargs)
Initialise a header from parsed values.

Here, the parsed values must be given as keyword arguments, i.e., for any header = cls(<data>), cls.
fromvalues(**header) == header.

However, unlike for the fromkeys() class method, data can also be set using arguments named after
methods, such as bps and time.

Given defaults:

invalid_data : False legacy_mode : False vdif_version : 1 thread_id : 0 frame_nr : 0 sync_pattern :
0xACABFEED for EDV 1 and 3, 0xa5ea5 for EDV 2

Values set by other keyword arguments (if present):

bits_per_sample : from bps frame_length : from samples_per_frame or frame_nbytes lg2_nchan : from
nchan station_id : from station sampling_rate, sampling_unit : from sample_rate ref_epoch, seconds,
frame_nr : from time

Note that to set time to non-integer seconds one also needs to pass in frame_rate or sample_rate.

get_time(self, frame_rate=None)
Converts ref_epoch, seconds, and frame_nr to Time object.

Uses ‘ref_epoch’, which stores the number of half-years from 2000, and ‘seconds’. By default, it also
calculates the offset using the current frame number. For non-zero ‘frame_nr’, this requires the frame rate,
which is calculated from the sample rate in the header.

Parameters

frame_rate
[Quantity, optional] For non-zero ‘frame_nr’, this is required to calculate the correspond-
ing offset.

Returns

time
[Time]

classmethod invariant_pattern(invariants=None, **kwargs)
Pattern and mask shared between headers of a type or stream.

This is mostly for use inside locate_frames().

Parameters

invariants
[set of str, optional] Set of keys to header parts that are shared between all headers of a
given type or within a given stream/file. Default: from invariants().

80 Chapter 5. VDIF

https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#False
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time


baseband Documentation, Release 3.1.0

**kwargs
Keyword arguments needed to instantiate an empty header. (Mostly for Mark 4).

Returns

pattern
[list of int] The pattern that is shared between headers. If called on an instance, just the
header words; if called on a class, words with defaults for the relevant parts set.

mask
[list of int] For each entry in pattern a bit mask with bits set for the parts that are invariant.

classmethod invariants()
Set of keys of invariant header parts.

On the class, this returns keys of parts that are shared by all headers for the type, on an instance, those that
are shared with other headers in the same file.

If neither are defined, returns ‘sync_pattern’ if the header containts that key.

keys(self)
All keys defined for this header.

same_stream(self, other)
Whether header is consistent with being from the same stream.

set_time(self, time, frame_rate=None)
Converts Time object to ref_epoch, seconds, and frame_nr.

For non-integer seconds, a frame rate is needed to calculate the ‘frame_nr’.

Parameters

time
[Time] The time to use for this header.

frame_rate
[Quantity, optional] For calculating ‘frame_nr’ from the fractional seconds.

tofile(self, fh)
Write VLBI frame header to filehandle.

update(self, *, verify=True, **kwargs)
Update the header by setting keywords or properties.

Here, any keywords matching header keys are applied first, and any remaining ones are used to set header
properties, in the order set by the class (in _properties).

Parameters

verify
[bool, optional] If True (default), verify integrity after updating.

**kwargs
Arguments used to set keywords and properties.

verify(self)
Basic checks of header integrity.

5.4. Reference/API 81

http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

VDIFHeader3

class baseband.vdif.header.VDIFHeader3(words, edv=None, verify=True, **kwargs)
Bases: baseband.vdif.header.VDIFSampleRateHeader

VDIF Header for EDV=3.

See https://vlbi.org/wp-content/uploads/2019/03/vdif_extension_0x03.pdf

Attributes Summary

bps Bits per elementary sample.
edv VDIF Extended Data Version (EDV).
frame_nbytes
frame_rate Number of frames per second.
mutable Whether the header can be modified.
nbytes Size of the header in bytes.
nchan Number of channels in the frame.
payload_nbytes
sample_rate Number of complete samples per second.
samples_per_frame Number of complete samples in the frame.
station Station ID: two ASCII characters, or 16-bit int.
time Converts ref_epoch, seconds, and frame_nr to Time

object.

Methods Summary

copy(self) Create a mutable and independent copy of the header.
from_mark5b_header(mark5b_header, bps, . . . ) Construct an Mark5B over VDIF header

(EDV=0xab).
fromfile(fh[, edv, verify]) Read VDIF Header from file.
fromkeys(\*\*kwargs) Initialise a header from parsed values.
fromvalues([edv, verify]) Initialise a header from parsed values.
get_time(self[, frame_rate]) Converts ref_epoch, seconds, and frame_nr to Time

object.
invariant_pattern([invariants]) Pattern and mask shared between headers of a type

or stream.
invariants() Set of keys of invariant header parts.
keys(self) All keys defined for this header.
same_stream(self, other) Whether header is consistent with being from the

same stream.
set_time(self, time[, frame_rate]) Converts Time object to ref_epoch, seconds, and

frame_nr.
tofile(self, fh) Write VLBI frame header to filehandle.
update(self, \*[, verify]) Update the header by setting keywords or properties.
verify(self) Basic checks of header integrity.

82 Chapter 5. VDIF

https://vlbi.org/wp-content/uploads/2019/03/vdif_extension_0x03.pdf


baseband Documentation, Release 3.1.0

Attributes Documentation

bps
Bits per elementary sample.

edv
VDIF Extended Data Version (EDV).

frame_nbytes

frame_rate
Number of frames per second.

Assumes the ‘sampling_rate’ header field represents a per-channel sample rate for complex samples, or
half the sample rate for real ones.

mutable
Whether the header can be modified.

nbytes
Size of the header in bytes.

nchan
Number of channels in the frame.

payload_nbytes

sample_rate
Number of complete samples per second.

Assumes the ‘sampling_rate’ header field represents a per-channel sample rate for complex samples, or
half the sample rate for real ones.

samples_per_frame
Number of complete samples in the frame.

station
Station ID: two ASCII characters, or 16-bit int.

time
Converts ref_epoch, seconds, and frame_nr to Time object.

Uses ‘ref_epoch’, which stores the number of half-years from 2000, and ‘seconds’. By default, it also
calculates the offset using the current frame number. For non-zero ‘frame_nr’, this requires the frame rate,
which is calculated from the sample rate in the header. The latter can also be explicitly passed on.

Parameters

frame_rate
[Quantity, optional] For non-zero ‘frame_nr’, this is used to calculate the corresponding
offset. If not given, the frame rate from the header is used (if it is non-zero).

Returns

time
[Time]

5.4. Reference/API 83

http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time


baseband Documentation, Release 3.1.0

Methods Documentation

copy(self)
Create a mutable and independent copy of the header.

Keyword arguments can be passed on as needed by possible subclasses.

classmethod from_mark5b_header(mark5b_header, bps, nchan, **kwargs)
Construct an Mark5B over VDIF header (EDV=0xab).

See https://vlbi.org/wp-content/uploads/2019/03/vdif_extension_0xab.pdf

Note that the Mark 5B header does not encode the bits-per-sample and the number of channels used
in the payload, so these need to be given separately. A complete frame can be encapsulated with
from_mark5b_frame.

Parameters

mark5b_header
[Mark5BHeader] Used to set time, etc.

bps
[int] Bits per elementary sample.

nchan
[int] Number of channels carried in the Mark 5B payload.

**kwargs
Any further arguments. Strictly, none are necessary to create a valid VDIF header, but this
can be used to pass on, e.g., invalid_data.

classmethod fromfile(fh, edv=None, verify=True)
Read VDIF Header from file.

Parameters

fh
[filehandle] To read data from.

edv
[int, False, or None, optional] Extended data version. If False, a legacy header is used. If
None (default), it is determined from the header. (Given it explicitly is mostly useful for a
slight speed-up.)

verify
[bool, optional] Whether to do basic verification of integrity. Default: True.

classmethod fromkeys(**kwargs)
Initialise a header from parsed values.

Like fromvalues(), but without any interpretation of keywords.

Raises

KeyError
[if not all keys required are pass in.]

classmethod fromvalues(edv=False, *, verify=True, **kwargs)
Initialise a header from parsed values.

84 Chapter 5. VDIF

https://vlbi.org/wp-content/uploads/2019/03/vdif_extension_0xab.pdf
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Here, the parsed values must be given as keyword arguments, i.e., for any header = cls(<data>), cls.
fromvalues(**header) == header.

However, unlike for the fromkeys() class method, data can also be set using arguments named after
methods, such as bps and time.

Given defaults:

invalid_data : False legacy_mode : False vdif_version : 1 thread_id : 0 frame_nr : 0 sync_pattern :
0xACABFEED for EDV 1 and 3, 0xa5ea5 for EDV 2

Values set by other keyword arguments (if present):

bits_per_sample : from bps frame_length : from samples_per_frame or frame_nbytes lg2_nchan : from
nchan station_id : from station sampling_rate, sampling_unit : from sample_rate ref_epoch, seconds,
frame_nr : from time

Note that to set time to non-integer seconds one also needs to pass in frame_rate or sample_rate.

get_time(self, frame_rate=None)
Converts ref_epoch, seconds, and frame_nr to Time object.

Uses ‘ref_epoch’, which stores the number of half-years from 2000, and ‘seconds’. By default, it also
calculates the offset using the current frame number. For non-zero ‘frame_nr’, this requires the frame rate,
which is calculated from the sample rate in the header. The latter can also be explicitly passed on.

Parameters

frame_rate
[Quantity, optional] For non-zero ‘frame_nr’, this is used to calculate the corresponding
offset. If not given, the frame rate from the header is used (if it is non-zero).

Returns

time
[Time]

classmethod invariant_pattern(invariants=None, **kwargs)
Pattern and mask shared between headers of a type or stream.

This is mostly for use inside locate_frames().

Parameters

invariants
[set of str, optional] Set of keys to header parts that are shared between all headers of a
given type or within a given stream/file. Default: from invariants().

**kwargs
Keyword arguments needed to instantiate an empty header. (Mostly for Mark 4).

Returns

pattern
[list of int] The pattern that is shared between headers. If called on an instance, just the
header words; if called on a class, words with defaults for the relevant parts set.

mask
[list of int] For each entry in pattern a bit mask with bits set for the parts that are invariant.

5.4. Reference/API 85

https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#False
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time


baseband Documentation, Release 3.1.0

classmethod invariants()
Set of keys of invariant header parts.

On the class, this returns keys of parts that are shared by all headers for the type, on an instance, those that
are shared with other headers in the same file.

If neither are defined, returns ‘sync_pattern’ if the header containts that key.

keys(self)
All keys defined for this header.

same_stream(self, other)
Whether header is consistent with being from the same stream.

set_time(self, time, frame_rate=None)
Converts Time object to ref_epoch, seconds, and frame_nr.

Parameters

time
[Time] The time to use for this header.

frame_rate
[Quantity, optional] For calculating ‘frame_nr’ from the fractional seconds. If not given,
the frame rate from the header is used (if it is non-zero).

tofile(self, fh)
Write VLBI frame header to filehandle.

update(self, *, verify=True, **kwargs)
Update the header by setting keywords or properties.

Here, any keywords matching header keys are applied first, and any remaining ones are used to set header
properties, in the order set by the class (in _properties).

Parameters

verify
[bool, optional] If True (default), verify integrity after updating.

**kwargs
Arguments used to set keywords and properties.

verify(self)
Basic checks of header integrity.

VDIFMark5BHeader

class baseband.vdif.header.VDIFMark5BHeader(words, edv=None, verify=True, **kwargs)
Bases: baseband.vdif.header.VDIFBaseHeader, baseband.mark5b.header.Mark5BHeader

Mark 5B over VDIF (EDV=0xab).

See https://vlbi.org/wp-content/uploads/2019/03/vdif_extension_0xab.pdf

86 Chapter 5. VDIF

http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
https://docs.python.org/3/library/constants.html#True
https://vlbi.org/wp-content/uploads/2019/03/vdif_extension_0xab.pdf


baseband Documentation, Release 3.1.0

Attributes Summary

bps Bits per elementary sample.
edv VDIF Extended Data Version (EDV).
fraction Fractional seconds (decoded from ‘bcd_fraction’).
frame_nbytes
jday Last three digits of MJD (decoded from ‘bcd_jday’).
kday
mutable Whether the header can be modified.
nbytes Size of the header in bytes.
nchan Number of channels in the frame.
payload_nbytes
samples_per_frame Number of complete samples in the frame.
seconds Integer seconds on day (decoded from

‘bcd_seconds’).
station Station ID: two ASCII characters, or 16-bit int.
time Convert ref_epoch, seconds, and fractional seconds

to Time object.

Methods Summary

copy(self) Create a mutable and independent copy of the header.
from_mark5b_header(mark5b_header, bps, . . . ) Construct an Mark5B over VDIF header

(EDV=0xab).
fromfile(fh[, edv, verify]) Read VDIF Header from file.
fromkeys(\*\*kwargs) Initialise a header from parsed values.
fromvalues([edv, verify]) Initialise a header from parsed values.
get_time(self[, frame_rate]) Convert ref_epoch, seconds, and fractional seconds

to Time object.
infer_kday(self, ref_time) Uses a reference time to set a header’s kday.
invariant_pattern([invariants]) Pattern and mask shared between headers of a type

or stream.
invariants() Set of keys of invariant header parts.
keys(self) All keys defined for this header.
same_stream(self, other) Whether header is consistent with being from the

same stream.
set_time(self, time[, frame_rate]) Converts Time object to ref_epoch, seconds, and

frame_nr.
tofile(self, fh) Write VLBI frame header to filehandle.
update(self, \*[, crc, verify]) Update the header by setting keywords or properties.
verify(self) Basic checks of header integrity.

5.4. Reference/API 87



baseband Documentation, Release 3.1.0

Attributes Documentation

bps
Bits per elementary sample.

edv
VDIF Extended Data Version (EDV).

fraction
Fractional seconds (decoded from ‘bcd_fraction’).

The fraction is stored to 0.1 ms accuracy. Following mark5access, this is “unrounded” to give the exact
time of the start of the frame for any total bit rate below 512 Mbps. For rates above this value, it is no
longer guaranteed that subsequent frames have unique rates.

Note to the above: since a Mark5B frame contains 80000 bits, the total bit rate for which times can be
unique would in principle be 800 Mbps. However, standard VLBI only uses bit rates that are powers of 2
in MHz.

frame_nbytes

jday
Last three digits of MJD (decoded from ‘bcd_jday’).

kday = None

mutable
Whether the header can be modified.

nbytes
Size of the header in bytes.

nchan
Number of channels in the frame.

payload_nbytes

samples_per_frame
Number of complete samples in the frame.

seconds
Integer seconds on day (decoded from ‘bcd_seconds’).

station
Station ID: two ASCII characters, or 16-bit int.

time
Convert ref_epoch, seconds, and fractional seconds to Time object.

Uses ‘ref_epoch’, which stores the number of half-years from 2000, and ‘seconds’, from the VDIF part of
the header, and the fractional seconds from the Mark 5B part.

Since some Mark 5B headers do not store the fractional seconds, one can also calculates the offset using
the current frame number by passing in a sample rate.

Furthermore, fractional seconds are stored only to 0.1 ms accuracy. In the code, this is “unrounded” to give
the exact time of the start of the frame for any total bit rate below 512 Mbps. For rates above this value,
it is no longer guaranteed that subsequent frames have unique rates, and one should pass in an explicit
sample rate instead.

88 Chapter 5. VDIF



baseband Documentation, Release 3.1.0

Parameters

frame_rate
[Quantity, optional] For non-zero ‘frame_nr’, this is used to calculate the corresponding
offset.

Returns

time
[Time]

Methods Documentation

copy(self)
Create a mutable and independent copy of the header.

Keyword arguments can be passed on as needed by possible subclasses.

classmethod from_mark5b_header(mark5b_header, bps, nchan, **kwargs)
Construct an Mark5B over VDIF header (EDV=0xab).

See https://vlbi.org/wp-content/uploads/2019/03/vdif_extension_0xab.pdf

Note that the Mark 5B header does not encode the bits-per-sample and the number of channels used
in the payload, so these need to be given separately. A complete frame can be encapsulated with
from_mark5b_frame.

Parameters

mark5b_header
[Mark5BHeader] Used to set time, etc.

bps
[int] Bits per elementary sample.

nchan
[int] Number of channels carried in the Mark 5B payload.

**kwargs
Any further arguments. Strictly, none are necessary to create a valid VDIF header, but this
can be used to pass on, e.g., invalid_data.

classmethod fromfile(fh, edv=None, verify=True)
Read VDIF Header from file.

Parameters

fh
[filehandle] To read data from.

edv
[int, False, or None, optional] Extended data version. If False, a legacy header is used. If
None (default), it is determined from the header. (Given it explicitly is mostly useful for a
slight speed-up.)

verify
[bool, optional] Whether to do basic verification of integrity. Default: True.

5.4. Reference/API 89

http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://vlbi.org/wp-content/uploads/2019/03/vdif_extension_0xab.pdf
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

classmethod fromkeys(**kwargs)
Initialise a header from parsed values.

Like fromvalues(), but without any interpretation of keywords.

Raises

KeyError
[if not all keys required are pass in.]

classmethod fromvalues(edv=False, *, verify=True, **kwargs)
Initialise a header from parsed values.

Here, the parsed values must be given as keyword arguments, i.e., for any header = cls(<data>), cls.
fromvalues(**header) == header.

However, unlike for the fromkeys() class method, data can also be set using arguments named after
methods, such as bps and time.

Given defaults:

invalid_data : False legacy_mode : False vdif_version : 1 thread_id : 0 frame_nr : 0 sync_pattern :
0xACABFEED for EDV 1 and 3, 0xa5ea5 for EDV 2

Values set by other keyword arguments (if present):

bits_per_sample : from bps frame_length : from samples_per_frame or frame_nbytes lg2_nchan : from
nchan station_id : from station sampling_rate, sampling_unit : from sample_rate ref_epoch, seconds,
frame_nr : from time

Note that to set time to non-integer seconds one also needs to pass in frame_rate or sample_rate.

get_time(self, frame_rate=None)
Convert ref_epoch, seconds, and fractional seconds to Time object.

Uses ‘ref_epoch’, which stores the number of half-years from 2000, and ‘seconds’, from the VDIF part of
the header, and the fractional seconds from the Mark 5B part.

Since some Mark 5B headers do not store the fractional seconds, one can also calculates the offset using
the current frame number by passing in a sample rate.

Furthermore, fractional seconds are stored only to 0.1 ms accuracy. In the code, this is “unrounded” to give
the exact time of the start of the frame for any total bit rate below 512 Mbps. For rates above this value,
it is no longer guaranteed that subsequent frames have unique rates, and one should pass in an explicit
sample rate instead.

Parameters

frame_rate
[Quantity, optional] For non-zero ‘frame_nr’, this is used to calculate the corresponding
offset.

Returns

time
[Time]

infer_kday(self, ref_time)
Uses a reference time to set a header’s kday.

90 Chapter 5. VDIF

https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#False
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time


baseband Documentation, Release 3.1.0

Parameters

ref_time
[Time] Reference time within 500 days of the observation time.

classmethod invariant_pattern(invariants=None, **kwargs)
Pattern and mask shared between headers of a type or stream.

This is mostly for use inside locate_frames().

Parameters

invariants
[set of str, optional] Set of keys to header parts that are shared between all headers of a
given type or within a given stream/file. Default: from invariants().

**kwargs
Keyword arguments needed to instantiate an empty header. (Mostly for Mark 4).

Returns

pattern
[list of int] The pattern that is shared between headers. If called on an instance, just the
header words; if called on a class, words with defaults for the relevant parts set.

mask
[list of int] For each entry in pattern a bit mask with bits set for the parts that are invariant.

classmethod invariants()
Set of keys of invariant header parts.

On the class, this returns keys of parts that are shared by all headers for the type, on an instance, those that
are shared with other headers in the same file.

If neither are defined, returns ‘sync_pattern’ if the header containts that key.

keys(self)
All keys defined for this header.

same_stream(self, other)
Whether header is consistent with being from the same stream.

set_time(self, time, frame_rate=None)
Converts Time object to ref_epoch, seconds, and frame_nr.

For non-integer seconds, a frame rate is needed to calculate the ‘frame_nr’.

Parameters

time
[Time] The time to use for this header.

frame_rate
[Quantity, optional] For calculating ‘frame_nr’ from the fractional seconds.

tofile(self, fh)
Write VLBI frame header to filehandle.

update(self, *, crc=None, verify=True, **kwargs)
Update the header by setting keywords or properties.

5.4. Reference/API 91

http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity


baseband Documentation, Release 3.1.0

Here, any keywords matching header keys are applied first, and any remaining ones are used to set header
properties, in the order set by the class (in _properties).

Parameters

crc
[int or None, optional] If None (default), recalculate the CRC after updating.

verify
[bool, optional] If True (default), verify integrity after updating.

**kwargs
Arguments used to set keywords and properties.

verify(self)
Basic checks of header integrity.

Variables

VDIF_HEADER_CLASSES Dict for storing VDIF header class definitions, indexed
by their EDV.

VDIF_HEADER_CLASSES

baseband.vdif.header.VDIF_HEADER_CLASSES = {-1: <class 'baseband.vdif.header.VDIFLegacyHeader'>, 0: <class 'baseband.vdif.header.VDIFHeader0'>, 1: <class 'baseband.vdif.header.VDIFHeader1'>, 2: <class 'baseband.vdif.header.VDIFHeader2'>, 3: <class 'baseband.vdif.header.VDIFHeader3'>, 171: <class 'baseband.vdif.header.VDIFMark5BHeader'>}
Dict for storing VDIF header class definitions, indexed by their EDV.

Class Inheritance Diagram

Mark5BHeader VDIFMark5BHeader

VLBIHeaderBase

VDIFHeader VDIFBaseHeader VDIFHeader0

VDIFSampleRateHeader

VDIFHeader2

VDIFLegacyHeader

VDIFHeader1

VDIFHeader3

92 Chapter 5. VDIF

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

5.4.3 baseband.vdif.payload Module

Definitions for VLBI VDIF payloads.

Implements a VDIFPayload class used to store payload words, and decode to or encode from a data array.

See the VDIF specification page for payload specifications.

Functions

init_luts() Sets up the look-up tables for levels as a function of
input byte.

decode_1bit(words)
decode_2bit(words) Decodes data stored using 2 bits per sample.
decode_4bit(words) Decodes data stored using 4 bits per sample.
encode_1bit(values) Encodes values using 1 bit per sample, packing the re-

sult into bytes.
encode_2bit(values) Encodes values using 2 bits per sample, packing the re-

sult into bytes.
encode_4bit(values) Encodes values using 4 bits per sample, packing the re-

sult into bytes.

init_luts

baseband.vdif.payload.init_luts()
Sets up the look-up tables for levels as a function of input byte.

Returns

lut1bit, lut2bit, lut4but
[ndarray] Look-up table for decoding bytes to samples of 1, 2, and 4 bits, resp.

Notes

Look-up tables are two-dimensional arrays whose first axis is indexed by byte value (in uint8 form) and whose
second axis represents sample temporal order. Table values are decoded sample values. Sec. 10 in the VDIF
Specification states that samples are encoded by offset-binary, such that all 0 bits is lowest and all 1 bits is
highest. I.e., for 2-bit sampling, the order is 00, 01, 10, 11. These are decoded using decoder_levels.

For example, the 2-bit sample sequence -1, -1, 1, 1 is encoded as 0b10100101 (or 165 in uint8 form). To
translate this back to sample values, access lut2bit using the byte as the key:

>>> lut2bit[0b10100101]
array([-1., -1., 1., 1.], dtype=float32)

5.4. Reference/API 93

https://www.vlbi.org/vdif
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://vlbi.org/wp-content/uploads/2019/03/VDIF_specification_Release_1.1.1.pdf
https://vlbi.org/wp-content/uploads/2019/03/VDIF_specification_Release_1.1.1.pdf


baseband Documentation, Release 3.1.0

decode_1bit

baseband.vdif.payload.decode_1bit(words)

decode_2bit

baseband.vdif.payload.decode_2bit(words)
Decodes data stored using 2 bits per sample.

decode_4bit

baseband.vdif.payload.decode_4bit(words)
Decodes data stored using 4 bits per sample.

encode_1bit

baseband.vdif.payload.encode_1bit(values)
Encodes values using 1 bit per sample, packing the result into bytes.

encode_2bit

baseband.vdif.payload.encode_2bit(values)
Encodes values using 2 bits per sample, packing the result into bytes.

encode_4bit

baseband.vdif.payload.encode_4bit(values)
Encodes values using 4 bits per sample, packing the result into bytes.

Classes

VDIFPayload(words[, header, nchan, bps, . . . ]) Container for decoding and encoding VDIF payloads.

VDIFPayload

class baseband.vdif.payload.VDIFPayload(words, header=None, nchan=1, bps=2, com-
plex_data=False)

Bases: baseband.vlbi_base.payload.VLBIPayloadBase

Container for decoding and encoding VDIF payloads.

Parameters

words
[ndarray] Array containg LSB unsigned words (with the right size) that encode the payload.

94 Chapter 5. VDIF

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


baseband Documentation, Release 3.1.0

header
[VDIFHeader] If given, used to infer the number of channels, bps, and whether the data are
complex.

nchan
[int, optional] Number of channels, used if header is not given. Default: 1.

bps
[int, optional] Bits per elementary sample, used if header is not given. Default: 2.

complex_data
[bool, optional] Whether the data are complex, used if header is not given. Default: False.

Attributes Summary

data Full decoded payload.
dtype Numeric type of the decoded data array.
nbytes Size of the payload in bytes.
ndim Number of dimensions of the decoded data array.
shape Shape of the decoded data array.
size Total number of component samples in the decoded

data array.

Methods Summary

fromdata(data[, header, bps, edv]) Encode data as payload, using header information.
fromfile(fh, header) Read payload from filehandle and decode it into data.
tofile(self, fh) Write payload to filehandle.

Attributes Documentation

data
Full decoded payload.

dtype
Numeric type of the decoded data array.

nbytes
Size of the payload in bytes.

ndim
Number of dimensions of the decoded data array.

shape
Shape of the decoded data array.

size
Total number of component samples in the decoded data array.

5.4. Reference/API 95

https://docs.python.org/3/library/constants.html#False


baseband Documentation, Release 3.1.0

Methods Documentation

classmethod fromdata(data, header=None, bps=2, edv=None)
Encode data as payload, using header information.

Parameters

data
[ndarray] Values to be encoded.

header
[VDIFHeader, optional] If given, used to infer the encoding, and to verify the number of
channels and whether the data are complex.

bps
[int, optional] Bits per elementary sample, used if header is not given. Default: 2.

edv
[int, optional] Should be given if header is not given and the payload is encoded as Mark
5 data (i.e., edv=0xab).

classmethod fromfile(fh, header)
Read payload from filehandle and decode it into data.

Parameters

fh
[filehandle] To read data from.

header
[VDIFHeader] Used to infer the payload size, number of channels, bits per sample, and
whether the data are complex.

tofile(self, fh)
Write payload to filehandle.

Class Inheritance Diagram

VDIFPayloadVLBIPayloadBase

96 Chapter 5. VDIF

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


baseband Documentation, Release 3.1.0

5.4.4 baseband.vdif.frame Module

Definitions for VLBI VDIF frames and frame sets.

Implements a VDIFFrame class that can be used to hold a header and a payload, providing access to the values encoded
in both. Also, define a VDIFFrameSet class that combines a set of frames from different threads.

For the VDIF specification, see https://www.vlbi.org/vdif

Classes

VDIFFrame(header, payload[, valid, verify]) Representation of a VDIF data frame, consisting of a
header and payload.

VDIFFrameSet(frames[, header0]) Representation of a set of VDIF frames, combining dif-
ferent threads.

VDIFFrame

class baseband.vdif.frame.VDIFFrame(header, payload, valid=None, verify=True)
Bases: baseband.vlbi_base.frame.VLBIFrameBase

Representation of a VDIF data frame, consisting of a header and payload.

Parameters

header
[VDIFHeader] Wrapper around the encoded header words, providing access to the header
information.

payload
[VDIFPayload] Wrapper around the payload, provding mechanisms to decode it.

valid
[bool or None] Whether the data are valid. If None (default), is inferred from header. Note
that header is changed in-place if True or False.

verify
[bool] Whether or not to do basic assertions that check the integrity (e.g., that channel in-
formation and whether or not data are complex are consistent between header and data).
Default: True.

Notes

The Frame can also be instantiated using class methods:

fromfile : read header and payload from a filehandle

fromdata : encode data as payload

Of course, one can also do the opposite:

tofile : method to write header and payload to filehandle

data : property that yields full decoded payload

5.4. Reference/API 97

https://www.vlbi.org/vdif
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

One can decode part of the payload by indexing or slicing the frame. If the frame does not contain valid data,
all values returned are set to self.fill_value.

A number of properties are defined: shape, dtype and size are the shape, type and number of complete samples
of the data array, and nbytes the frame size in bytes. Furthermore, the frame acts as a dictionary, with keys
those of the header. Any attribute that is not defined on the frame itself, such as .time will be looked up on the
header as well.

Attributes Summary

data Full decoded frame.
dtype Numeric type of the frame data.
fill_value Value to replace invalid data in the frame.
nbytes Size of the encoded frame in bytes.
ndim Number of dimensions of the frame data.
sample_shape Shape of a sample in the frame (nchan,).
shape Shape of the frame data.
size Total number of component samples in the frame

data.
valid Whether frame contains valid data.

Methods Summary

from_mark5b_frame(mark5b_frame[, verify]) Construct an Mark5B over VDIF frame
(EDV=0xab).

fromdata(data[, header, verify]) Construct frame from data and header.
fromfile(fh[, edv, verify]) Read a frame from a filehandle.
keys(self)
tofile(self, fh) Write encoded frame to filehandle.
verify(self) Verify integrity.

Attributes Documentation

data
Full decoded frame.

dtype
Numeric type of the frame data.

fill_value
Value to replace invalid data in the frame.

nbytes
Size of the encoded frame in bytes.

ndim
Number of dimensions of the frame data.

sample_shape
Shape of a sample in the frame (nchan,).

shape
Shape of the frame data.

98 Chapter 5. VDIF



baseband Documentation, Release 3.1.0

size
Total number of component samples in the frame data.

valid
Whether frame contains valid data.

This is just the opposite of the invalid_data item in the header. If set, that header item is adjusted
correspondingly.

Methods Documentation

classmethod from_mark5b_frame(mark5b_frame, verify=True, **kwargs)
Construct an Mark5B over VDIF frame (EDV=0xab).

Any additional keywords can be used to set VDIF header properties not found in the Mark 5B header (such
as station).

See https://vlbi.org/wp-content/uploads/2019/03/vdif_extension_0xab.pdf

classmethod fromdata(data, header=None, verify=True, **kwargs)
Construct frame from data and header.

Parameters

data
[ndarray] Array holding complex or real data to be encoded.

header
[VDIFHeader or None] If not given, will attempt to generate one using the keywords.

verify
[bool, optional] Whether or not to do basic assertions that check the integrity (e.g., that
channel information and whether or not data are complex are consistent between header
and data). Default: True.

**kwargs
If header is not given, these are used to initialize one.

classmethod fromfile(fh, edv=None, verify=True)
Read a frame from a filehandle.

Parameters

fh
[filehandle] From which the header and payload are read.

edv
[int, False, or None, optional] Extended Data Version. False is for legacy headers. If None
(default), it will be determined from the words themselves.

verify
[bool, optional] Whether or not to do basic assertions that check the integrity (e.g., that
channel information and whether or not data are complex are consistent between header
and data). Default: True.

keys(self)

tofile(self, fh)
Write encoded frame to filehandle.

5.4. Reference/API 99

https://vlbi.org/wp-content/uploads/2019/03/vdif_extension_0xab.pdf
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

verify(self)
Verify integrity.

Checks consistency between the header information and payload data shape and type.

VDIFFrameSet

class baseband.vdif.frame.VDIFFrameSet(frames, header0=None)
Bases: object

Representation of a set of VDIF frames, combining different threads.

Parameters

frames
[list of VDIFFrame] Should all cover the same time span.

header0
[VDIFHeader] First header of the frame set. If None (default), is extracted from frames[0].

Notes

The FrameSet can also be read instantiated using class methods:

fromfile : read frames from a filehandle, optionally selecting threads

fromdata : encode data as a set of frames

Of course, one can also do the opposite:

tofile : write frames to filehandle

data : property that yields full decoded frame payloads

One can decode part of the payload by indexing or slicing the frame. If the frame does not contain valid data,
all values returned are set to self.fill_value.

A number of properties are defined: shape, dtype and size are the shape, type and number of complete samples
of the data array, and nbytes the frame size in bytes. Like a VDIFFrame, the frame set acts as a dictionary,
with keys those of the header of the first frame (available via .header0). Any attribute that is not defined on the
frame set itself, such as .time will also be looked up on the header.

Attributes Summary

data Full decoded frame.
dtype Numeric type of the frameset data.
fill_value Value to replace invalid data in the frameset.
nbytes Size of the encoded frame in bytes.
ndim Number of dimensions of the frameset data.
sample_shape Shape of a sample in the frameset (nthread, nchan).
shape Shape of the frameset data.
size Total number of component samples in the frameset

data.
valid Whether frameset contains valid data.

100 Chapter 5. VDIF

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None


baseband Documentation, Release 3.1.0

Methods Summary

fromdata(data[, headers, verify]) Construct a set of frames from data and headers.
fromfile(fh[, thread_ids, edv, verify]) Read a frame set from a file, starting at the current

location.
keys(self)
tofile(self, fh) Write all encoded frames to filehandle.

Attributes Documentation

data
Full decoded frame.

dtype
Numeric type of the frameset data.

fill_value
Value to replace invalid data in the frameset.

nbytes
Size of the encoded frame in bytes.

ndim
Number of dimensions of the frameset data.

sample_shape
Shape of a sample in the frameset (nthread, nchan).

shape
Shape of the frameset data.

size
Total number of component samples in the frameset data.

valid
Whether frameset contains valid data.

Methods Documentation

classmethod fromdata(data, headers=None, verify=True, **kwargs)
Construct a set of frames from data and headers.

Parameters

data
[ndarray] Array holding complex or real data to be encoded. Dimensions should be
(samples_per_frame, nthread, nchan).

headers
[VDIFHeader, list of same, or None] If a single header, a list with increasing thread_id
is generated. If not given, will attempt to generate a header from the keyword arguments.

verify
[bool] Whether or not to do basic assertions that check the integrety (e.g., that channel
information and whether or not data are complex are consistent between header and data).
Default: True.

5.4. Reference/API 101

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

**kwargs
If header is not given, these are used to initialize one.

Returns

frameset
[VDIFFrameSet]

classmethod fromfile(fh, thread_ids=None, edv=None, verify=True)
Read a frame set from a file, starting at the current location.

Parameters

fh
[filehandle] Handle to the VDIF file. Should be at the location where the frames are read
from.

thread_ids
[list or None, optional] The thread ids that should be read. If None (default), continue
reading threads as long as the frame number does not increase.

edv
[int or None, optional] The expected extended data version for the VDIF Header. If None
(default), use that of the first frame. (Passing it in slightly improves file integrity checking.)

verify
[bool, optional] Whether to do (light) sanity checks on the header. Default: True.

Returns

frameset
[VDIFFrameSet] Its frames property holds a list of frames (in order of either their
thread_id or following the input thread_ids list). Use the data attribute to convert
to an array.

keys(self)

tofile(self, fh)
Write all encoded frames to filehandle.

Class Inheritance Diagram

VDIFFrameVLBIFrameBase

VDIFFrameSet

102 Chapter 5. VDIF

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

5.4.5 baseband.vdif.file_info Module

The VDIFFileReaderInfo property.

Includes information about threads and frame sets.

Classes

VDIFFileReaderInfo([parent])

VDIFFileReaderInfo

class baseband.vdif.file_info.VDIFFileReaderInfo(parent=None)
Bases: baseband.vlbi_base.file_info.VLBIFileReaderInfo

Attributes Summary

attr_names Attributes that the container provides.
bps Link to header0.bps
checks Link to checks
complex_data
decodable Whether decoding the first frame worked.
edv Link to header0.edv
errors Link to errors
format The file format.
frame0 First frame from the file.
frame_rate Number of frames per unit time.
header0
missing Link to missing
number_of_frames Total number of frames.
number_of_framesets
readable Whether the file is readable and decodable.
sample_rate Rate of complete samples per unit time.
sample_shape
samples_per_frame Link to header0.samples_per_frame
start_time
thread_ids
warnings Link to warnings

5.4. Reference/API 103



baseband Documentation, Release 3.1.0

Methods Summary

__call__(self) Create a dict with file information.

Attributes Documentation

attr_names = ('format', 'edv', 'number_of_frames', 'thread_ids', 'number_of_framesets', 'frame_rate', 'sample_rate', 'samples_per_frame', 'sample_shape', 'bps', 'complex_data', 'start_time', 'readable', 'missing', 'checks', 'errors', 'warnings')
Attributes that the container provides.

bps
Link to header0.bps

checks
Link to checks

complex_data

decodable
Whether decoding the first frame worked.

edv
Link to header0.edv

errors
Link to errors

format
The file format.

frame0
First frame from the file.

frame_rate
Number of frames per unit time.

header0

missing
Link to missing

number_of_frames
Total number of frames.

number_of_framesets

readable
Whether the file is readable and decodable.

sample_rate
Rate of complete samples per unit time.

sample_shape

samples_per_frame
Link to header0.samples_per_frame

104 Chapter 5. VDIF



baseband Documentation, Release 3.1.0

start_time

thread_ids

warnings
Link to warnings

Methods Documentation

__call__(self)
Create a dict with file information.

This includes information about checks done, possible missing information, as well as possible warnings
and errors.

Class Inheritance Diagram

VDIFFileReaderInfoVLBIFileReaderInfoVLBIInfoBase

5.4.6 baseband.vdif.base Module

Functions

open(name[, mode]) Open VDIF file(s) for reading or writing.

open

baseband.vdif.base.open(name, mode='rs', **kwargs)
Open VDIF file(s) for reading or writing.

Opened as a binary file, one gets a wrapped filehandle that adds methods to read/write a frame. Opened as a
stream, the handle is wrapped further, with methods such as reading and writing to the file as if it were a stream
of samples.

Parameters

name
[str or filehandle, or sequence of str] File name, filehandle, or sequence of file names (see
Notes).

mode
[{‘rb’, ‘wb’, ‘rs’, or ‘ws’}, optional] Whether to open for reading or writing, and as a regular

5.4. Reference/API 105



baseband Documentation, Release 3.1.0

binary file or as a stream. Default: ‘rs’, for reading a stream.

**kwargs
Additional arguments when opening the file as a stream.

— For reading a stream
[(see VDIFStreamReader)]

sample_rate
[Quantity, optional] Number of complete samples per second, i.e. the rate at which each
channel in each thread is sampled. If None (default), will be inferred from the header or by
scanning one second of the file.

squeeze
[bool, optional] If True (default), remove any dimensions of length unity from decoded data.

subset
[indexing object or tuple of objects, optional] Specific components of the complete sample
to decode (after possible squeezing). If a single indexing object is passed, it selects threads.
If a tuple is passed, the first selects threads and the second selects channels. If the tuple is
empty (default), all components are read.

fill_value
[float or complex, optional] Value to use for invalid or missing data. Default: 0.

verify
[bool, optional] Whether to do basic checks of frame integrity when reading. The first
frameset of the stream is always checked. Default: True.

— For writing a stream
[(see VDIFStreamWriter)]

header0
[VDIFHeader] Header for the first frame, holding time information, etc. Can instead give
keyword arguments to construct a header (see **kwargs).

sample_rate
[Quantity] Number of complete samples per second, i.e. the rate at which each channel
in each thread is sampled. For EDV 1 and 3, can alternatively set sample_rate within the
header.

nthread
[int, optional] Number of threads (e.g., 2 for 2 polarisations). Default: 1.

squeeze
[bool, optional] If True (default), writer accepts squeezed arrays as input, and adds any
dimensions of length unity.

file_size
[int or None, optional] When writing to a sequence of files, the maximum size of one file in
bytes. If None (default), the file size is unlimited, and only the first file will be written to.

**kwargs
If the header is not given, an attempt will be made to construct one with any further keyword
arguments. See VDIFStreamWriter.

106 Chapter 5. VDIF

http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None


baseband Documentation, Release 3.1.0

Notes

One can also pass to name a list, tuple, or subclass of FileNameSequencer. For writing to multiple files,
the file_size keyword must be passed or only the first file will be written to. One may also pass in a
sequentialfile object (opened in ‘rb’ mode for reading or ‘w+b’ for writing), though for typical use cases it
is practically identical to passing in a list or template.

Classes

VDIFFileReader(fh_raw) Simple reader for VDIF files.
VDIFFileWriter(fh_raw) Simple writer for VDIF files.
VDIFStreamBase(fh_raw, header0[, . . . ]) Base for VDIF streams.
VDIFStreamReader(fh_raw[, sample_rate, . . . ]) VLBI VDIF format reader.
VDIFStreamWriter(fh_raw[, header0, . . . ]) VLBI VDIF format writer.

VDIFFileReader

class baseband.vdif.base.VDIFFileReader(fh_raw)
Bases: baseband.vlbi_base.base.VLBIFileReaderBase

Simple reader for VDIF files.

Wraps a binary filehandle, providing methods to help interpret the data, such as read_frame, read_frameset
and get_frame_rate.

Parameters

fh_raw
[filehandle] Filehandle of the raw binary data file.

Attributes Summary

info()

Methods Summary

close(self)
find_header(self[, pattern, edv, mask, . . . ]) Find the nearest header from the current position.
get_frame_rate(self) Determine the number of frames per second.
get_thread_ids(self[, check]) Determine the number of threads in the VDIF file.
locate_frames(self, pattern, \*[, mask, . . . ]) Use a pattern to locate frame starts near the current

position.
read_frame(self[, edv, verify]) Read a single frame (header plus payload).
read_frameset(self[, thread_ids, edv, verify]) Read a single frame (header plus payload).
read_header(self[, edv, verify]) Read a single header from the file.
temporary_offset(self) Context manager for temporarily seeking to another

file position.

5.4. Reference/API 107



baseband Documentation, Release 3.1.0

Attributes Documentation

info

Methods Documentation

close(self)

find_header(self, pattern=None, *, edv=None, mask=None, frame_nbytes=None, offset=0, for-
ward=True, maximum=None, check=1)

Find the nearest header from the current position.

Search for a valid header at a given position which is consistent with pattern and/or with a header a frame
size ahead. Note that the search is much slower if no pattern is given, as at every position it is tried to read
a header, and then check for another one one frame ahead. It helps to pass in edv and frame_nbytes (if
known).

If successful, the file pointer is left at the start of the header.

Parameters

pattern
[VDIFHeader, array of byte, or compatible] If given, used for a direct search.

edv
[int] EDV of the header, used if pattern is not given.

mask
[array of byte, bytes, iterable of int, string or int] Bit mask for the pattern, with 1 indicat-
ing a given bit will be used the comparison. Only used with pattern and not needed if
pattern is a header.

frame_nbytes
[int, optional] Frame size in bytes. Defaults to the frame size in any header passed in.

offset
[int, optional] Offset from the frame start that the pattern occurs. Any offsets inferred from
masked entries are added to this (hence, no offset needed when a header is passed in as
pattern, nor is an offset needed for a full search).

forward
[bool, optional] Seek forward if True (default), backward if False.

maximum
[int, optional] Maximum number of bytes to search away from the present location. De-
fault: search twice the frame size if given, otherwise 10000 (extra bytes to avoid partial
patterns will be added). Use 0 to check only at the current position.

check
[int or tuple of int, optional] Frame offsets where another header should be present. De-
fault: 1, i.e., a sync pattern should be present one frame after the one found (independent
of forward), thus helping to guarantee the frame is not corrupted.

Returns

108 Chapter 5. VDIF

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False


baseband Documentation, Release 3.1.0

header
[VDIFHeader] Retrieved VDIF header.

Raises

~baseband.vlbi_base.base.HeaderNotFoundError
If no header could be located.

AssertionError
If the header did not pass verification.

get_frame_rate(self)
Determine the number of frames per second.

This method first tries to determine the frame rate by looking for the highest frame number in the first
second of data. If that fails, it attempts to extract the sample rate from the header.

Returns

frame_rate
[Quantity] Frames per second.

get_thread_ids(self, check=2)
Determine the number of threads in the VDIF file.

The file is presumed to be positioned at the start of a header. Usually, it suffices to just seek to the start of
the file, but if not, use find_header.

Parameters

check
[int, optional] Number of extra frames to check. Frame sets are scanned until the number
of thread IDs found no longer increases for check frames.

Returns

thread_ids
[list] Sorted list of all thread ids encountered in the frames scanned.

locate_frames(self, pattern, *, mask=None, frame_nbytes=None, offset=0, forward=True, maxi-
mum=None, check=1)

Use a pattern to locate frame starts near the current position.

Note that the current position is always included.

Parameters

pattern
[header, ~numpy.ndaray, bytes, int, or iterable of int] Synchronization pattern to look for.
If a header or header class, invariant_pattern() is used to create a masked pattern,
using invariant keys from invariants(). If an ndarray or bytes instance, a byte array
view is taken. If an (iterable of) int, the integers need to be unsigned 32 bit and will be
interpreted as little-endian.

mask
[~numpy.ndarray, bytes, int, or iterable of int.] Bit mask for the pattern, with 1 indicating
a given bit will be used the comparison.

5.4. Reference/API 109

http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#bytes


baseband Documentation, Release 3.1.0

frame_nbytes
[int, optional] Frame size in bytes. Defaults to the frame size in any header passed in.

offset
[int, optional] Offset from the frame start that the pattern occurs. Any offsets inferred from
masked entries are added to this (hence, no offset needed when a header is passed in as
pattern).

forward
[bool, optional] Seek forward if True (default), backward if False.

maximum
[int, optional] Maximum number of bytes to search away from the present location. De-
fault: search twice the frame size if given, otherwise 1 million (extra bytes to avoid partial
patterns will be added). Use 0 to check only at the current position.

check
[int or tuple of int, optional] Frame offsets where another sync pattern should be present
(if inside the file). Ignored if frame_nbytes is not given. Default: 1, i.e., a sync pattern
should be present one frame after the one found (independent of forward), thus helping
to guarantee the frame is not corrupted.

Returns

locations
[list of int] Locations of sync patterns within the range scanned, in order of proximity to
the starting position.

read_frame(self, edv=None, verify=True)
Read a single frame (header plus payload).

Parameters

edv
[int, optional] The expected extended data version for the VDIF Header. If None, use that
of the first frame. (Passing it in slightly improves file integrity checking.)

verify
[bool, optional] Whether to do basic checks of frame integrity. Default: True.

Returns

frame
[VDIFFrame] With .header and .data properties that return the VDIFHeader and data
encoded in the frame, respectively.

read_frameset(self, thread_ids=None, edv=None, verify=True)
Read a single frame (header plus payload).

Parameters

thread_ids
[list, optional] The thread ids that should be read. If None (default), read all threads.

edv
[int, optional] The expected extended data version for the VDIF Header. If None, use that
of the first frame. (Passing it in slightly improves file integrity checking.)

110 Chapter 5. VDIF

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None


baseband Documentation, Release 3.1.0

verify
[bool, optional] Whether to do basic checks of frame integrity. Default: True.

Returns

frameset
[VDIFFrameSet] With .headers and .data properties that return a list of VDIFHeader
and the data encoded in the frame set, respectively.

read_header(self, edv=None, verify=True)
Read a single header from the file.

Parameters

edv
[int, False, or None, optional] Extended data version. If False, a legacy header is used. If
None (default), it is determined from the header. (Given it explicitly is mostly useful for a
slight speed-up.)

verify
[bool, optional] Whether to do basic verification of integrity. Default: True.

Returns

header
[VDIFHeader]

temporary_offset(self)
Context manager for temporarily seeking to another file position.

To be used as part of a with statement:

with fh_raw.temporary_offset() [as fh_raw]:
with-block

On exiting the with-block, the file pointer is moved back to its original position.

VDIFFileWriter

class baseband.vdif.base.VDIFFileWriter(fh_raw)
Bases: baseband.vlbi_base.base.VLBIFileBase

Simple writer for VDIF files.

Adds write_frame and write_frameset methods to the basic VLBI binary file wrapper.

5.4. Reference/API 111

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Methods Summary

close(self)
temporary_offset(self) Context manager for temporarily seeking to another

file position.
write_frame(self, data[, header]) Write a single frame (header plus payload).
write_frameset(self, data[, header]) Write a single frame set (headers plus payloads).

Methods Documentation

close(self)

temporary_offset(self)
Context manager for temporarily seeking to another file position.

To be used as part of a with statement:

with fh_raw.temporary_offset() [as fh_raw]:
with-block

On exiting the with-block, the file pointer is moved back to its original position.

write_frame(self, data, header=None, **kwargs)
Write a single frame (header plus payload).

Parameters

data
[ndarray or VDIFFrame] If an array, a header should be given, which will be used to get
the information needed to encode the array, and to construct the VDIF frame.

header
[VDIFHeader] Can instead give keyword arguments to construct a header. Ignored if data
is a VDIFFrame instance.

**kwargs
If header is not given, these are used to initialize one.

write_frameset(self, data, header=None, **kwargs)
Write a single frame set (headers plus payloads).

Parameters

data
[ndarray or VDIFFrameSet] If an array, a header should be given, which will be used to
get the information needed to encode the array, and to construct the VDIF frame set.

header
[VDIFHeader, list of same] Can instead give keyword arguments to construct a header.
Ignored if data is a VDIFFrameSet instance. If a list, should have a length matching the
number of threads in data; if a single header, thread_ids corresponding to the number
of threads are generated automatically.

**kwargs
If header is not given, these are used to initialize one.

112 Chapter 5. VDIF

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


baseband Documentation, Release 3.1.0

VDIFStreamBase

class baseband.vdif.base.VDIFStreamBase(fh_raw, header0, sample_rate=None, nthread=1,
squeeze=True, subset=(), fill_value=0.0, verify=True)

Bases: baseband.vlbi_base.base.VLBIStreamBase

Base for VDIF streams.

Attributes Summary

bps Bits per elementary sample.
complex_data Whether the data are complex.
header0 First header of the file.
sample_rate Number of complete samples per second.
sample_shape Shape of a complete sample (possibly subset or

squeezed).
samples_per_frame Number of complete samples per frame.
squeeze Whether data arrays have dimensions with length

unity removed.
start_time Start time of the file.
subset Specific components of the complete sample to de-

code.
time Time of the sample pointer’s current offset in file.
verify Whether to do consistency checks on frames being

read.

Methods Summary

close(self)
tell(self[, unit]) Current offset in the file.

Attributes Documentation

bps
Bits per elementary sample.

complex_data
Whether the data are complex.

header0
First header of the file.

sample_rate
Number of complete samples per second.

sample_shape
Shape of a complete sample (possibly subset or squeezed).

samples_per_frame
Number of complete samples per frame.

squeeze
Whether data arrays have dimensions with length unity removed.

5.4. Reference/API 113



baseband Documentation, Release 3.1.0

If True, data read out has such dimensions removed, and data passed in for writing has them inserted.

start_time
Start time of the file.

See also time for the time of the sample pointer’s current offset.

subset
Specific components of the complete sample to decode.

The order of dimensions is the same as for sample_shape. Set by the class initializer.

time
Time of the sample pointer’s current offset in file.

See also start_time for the start time of the file.

verify
Whether to do consistency checks on frames being read.

Methods Documentation

close(self)

tell(self, unit=None)
Current offset in the file.

Parameters

unit
[Unit or str, optional] Time unit the offset should be returned in. By default, no unit is
used, i.e., an integer enumerating samples is returned. For the special string ‘time’, the
absolute time is calculated.

Returns

offset
[int, Quantity, or Time] Offset in current file (or time at current position).

VDIFStreamReader

class baseband.vdif.base.VDIFStreamReader(fh_raw, sample_rate=None, squeeze=True, subset=(),
fill_value=0.0, verify='fix')

Bases: baseband.vdif.base.VDIFStreamBase, baseband.vlbi_base.base.VLBIStreamReaderBase

VLBI VDIF format reader.

Allows access to a VDIF file as a continuous series of samples.

Parameters

fh_raw
[filehandle] Filehandle of the raw VDIF stream.

sample_rate
[Quantity, optional] Number of complete samples per second, i.e. the rate at which each

114 Chapter 5. VDIF

https://docs.python.org/3/library/constants.html#True
http://docs.astropy.org/en/stable/api/astropy.units.Unit.html#astropy.units.Unit
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity


baseband Documentation, Release 3.1.0

channel in each thread is sampled. If None (default), will be inferred from the header or by
scanning one second of the file.

squeeze
[bool, optional] If True (default), remove any dimensions of length unity from decoded data.

subset
[indexing object or tuple of objects, optional] Specific components of the complete sample
to decode (after possible squeezing). If a single indexing object is passed, it selects threads.
If a tuple is passed, the first selects threads and the second selects channels. If the tuple is
empty (default), all components are read.

fill_value
[float or complex, optional] Value to use for invalid or missing data. Default: 0.

verify
[bool, optional] Whether to do basic checks of frame integrity when reading. The first
frameset of the stream is always checked. Default: True.

Attributes Summary

bps Bits per elementary sample.
complex_data Whether the data are complex.
dtype
fill_value Value to use for invalid or missing data.
header0 First header of the file.
info() Standardized information on stream readers.
ndim Number of dimensions of the (squeezed/subset)

stream data.
sample_rate Number of complete samples per second.
sample_shape Shape of a complete sample (possibly subset or

squeezed).
samples_per_frame Number of complete samples per frame.
shape Shape of the (squeezed/subset) stream data.
size Total number of component samples in the

(squeezed/subset) stream data.
squeeze Whether data arrays have dimensions with length

unity removed.
start_time Start time of the file.
stop_time Time at the end of the file, just after the last sample.
subset Specific components of the complete sample to de-

code.
time Time of the sample pointer’s current offset in file.
verify Whether to do consistency checks on frames being

read.

5.4. Reference/API 115

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Methods Summary

close(self)
read(self[, count, out]) Read a number of complete (or subset) samples.
readable(self) Whether the file can be read and decoded.
seek(self, offset[, whence]) Change the stream position.
tell(self[, unit]) Current offset in the file.

Attributes Documentation

bps
Bits per elementary sample.

complex_data
Whether the data are complex.

dtype

fill_value
Value to use for invalid or missing data. Default: 0.

header0
First header of the file.

info
Standardized information on stream readers.

The info descriptor provides a few standard attributes, most of which can also be accessed directly on the
stream filehandle, and tests basic readability of the stream. More detailed information on the underlying
file is stored in its info, accessible via info.file_info (and shown by __repr__).

Attributes

start_time
[Time] Time of the first complete sample.

stop_time
[Time] Time of the complete sample just beyond the end of the file.

sample_rate
[Quantity] Complete samples per unit of time.

shape
[tuple] Equivalent shape of the whole file, i.e., combining the number of complete samples
and the shape of those samples.

bps
[int] Number of bits used to encode each elementary sample.

complex_data
[bool] Whether the data are complex.

verify
[bool or str] The type of verification done by the stream reader.

readable
[bool] Whether the first and last samples could be read and decoded.

116 Chapter 5. VDIF

http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity


baseband Documentation, Release 3.1.0

checks
[dict] Checks that were done to determine whether the file was readable (normally ‘con-
tinuous’ and ‘decodable’).

errors
[dict] Any exceptions raised while trying to determine attributes or doing checks. Keyed
by the attributes/checks.

warnings
[dict] Any warnings about the attributes or about the checks. Keyed by the at-
tributes/checks.

ndim
Number of dimensions of the (squeezed/subset) stream data.

sample_rate
Number of complete samples per second.

sample_shape
Shape of a complete sample (possibly subset or squeezed).

samples_per_frame
Number of complete samples per frame.

shape
Shape of the (squeezed/subset) stream data.

size
Total number of component samples in the (squeezed/subset) stream data.

squeeze
Whether data arrays have dimensions with length unity removed.

If True, data read out has such dimensions removed, and data passed in for writing has them inserted.

start_time
Start time of the file.

See also time for the time of the sample pointer’s current offset, and (if available) stop_time for the time
at the end of the file.

stop_time
Time at the end of the file, just after the last sample.

See also start_time for the start time of the file, and time for the time of the sample pointer’s current
offset.

subset
Specific components of the complete sample to decode.

The order of dimensions is the same as for sample_shape. Set by the class initializer.

time
Time of the sample pointer’s current offset in file.

See also start_time for the start time, and (if available) stop_time for the end time, of the file.

verify
Whether to do consistency checks on frames being read.

5.4. Reference/API 117

https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Methods Documentation

close(self)

read(self, count=None, out=None)
Read a number of complete (or subset) samples.

The range retrieved can span multiple frames.

Parameters

count
[int or None, optional] Number of complete/subset samples to read. If None (default) or
negative, the whole file is read. Ignored if out is given.

out
[None or array, optional] Array to store the data in. If given, count will be inferred from
the first dimension; the other dimension should equal sample_shape.

Returns

out
[ndarray of float or complex] The first dimension is sample-time, and the remainder given
by sample_shape.

readable(self)
Whether the file can be read and decoded.

seek(self, offset, whence=0)
Change the stream position.

This works like a normal filehandle seek, but the offset is in samples (or a relative or absolute time).

Parameters

offset
[int, Quantity, or Time] Offset to move to. Can be an (integer) number of samples, an
offset in time units, or an absolute time.

whence
[{0, 1, 2, ‘start’, ‘current’, or ‘end’}, optional] Like regular seek, the offset is taken to be
from the start if whence=0 (default), from the current position if 1, and from the end if 2.
One can alternativey use ‘start’, ‘current’, or ‘end’ for 0, 1, or 2, respectively. Ignored if
offset is a time.

tell(self, unit=None)
Current offset in the file.

Parameters

unit
[Unit or str, optional] Time unit the offset should be returned in. By default, no unit is
used, i.e., an integer enumerating samples is returned. For the special string ‘time’, the
absolute time is calculated.

Returns

118 Chapter 5. VDIF

https://docs.python.org/3/library/constants.html#None
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.units.Unit.html#astropy.units.Unit


baseband Documentation, Release 3.1.0

offset
[int, Quantity, or Time] Offset in current file (or time at current position).

VDIFStreamWriter

class baseband.vdif.base.VDIFStreamWriter(fh_raw, header0=None, sample_rate=None, nthread=1,
squeeze=True, **kwargs)

Bases: baseband.vdif.base.VDIFStreamBase, baseband.vlbi_base.base.VLBIStreamWriterBase

VLBI VDIF format writer.

Encodes and writes sequences of samples to file.

Parameters

fh_raw
[filehandle] Which will write filled sets of frames to storage.

header0
[VDIFHeader] Header for the first frame, holding time information, etc. Can instead give
keyword arguments to construct a header (see **kwargs).

sample_rate
[Quantity] Number of complete samples per second, i.e. the rate at which each channel
in each thread is sampled. For EDV 1 and 3, can alternatively set sample_rate within the
header.

nthread
[int, optional] Number of threads (e.g., 2 for 2 polarisations). Default: 1.

squeeze
[bool, optional] If True (default), write accepts squeezed arrays as input, and adds any
dimensions of length unity.

**kwargs
If no header is given, an attempt is made to construct one from these. For a standard header,
this would include the following.

— Header keywords
[(see fromvalues())]

time
[Time] Start time of the file. Can instead pass on ref_epoch and seconds.

nchan
[int, optional] Number of channels (default: 1). Note: different numbers of channels per
thread is not supported.

complex_data
[bool, optional] Whether data are complex. Default: False.

bps
[int, optional] Bits per elementary sample, i.e. per real or imaginary component for complex
data. Default: 1.

samples_per_frame
[int] Number of complete samples per frame. Can alternatively use frame_length, the
number of 8-byte words for header plus payload. For some EDV, this number is fixed (e.g.,
frame_length=629 for edv=3, which corresponds to 20000 real 2-bit samples per frame).

5.4. Reference/API 119

http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
https://docs.python.org/3/library/constants.html#True
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://docs.python.org/3/library/constants.html#False


baseband Documentation, Release 3.1.0

station
[2 characters, optional] Station ID. Can also be an unsigned 2-byte integer. Default: 0.

edv
[{False, 0, 1, 2, 3, 4, 0xab}] Extended Data Version.

Attributes Summary

bps Bits per elementary sample.
complex_data Whether the data are complex.
header0 First header of the file.
sample_rate Number of complete samples per second.
sample_shape Shape of a complete sample (possibly subset or

squeezed).
samples_per_frame Number of complete samples per frame.
squeeze Whether data arrays have dimensions with length

unity removed.
start_time Start time of the file.
subset Specific components of the complete sample to de-

code.
time Time of the sample pointer’s current offset in file.
verify Whether to do consistency checks on frames being

read.

Methods Summary

close(self)
tell(self[, unit]) Current offset in the file.
write(self, data[, valid]) Write data, buffering by frames as needed.

Attributes Documentation

bps
Bits per elementary sample.

complex_data
Whether the data are complex.

header0
First header of the file.

sample_rate
Number of complete samples per second.

sample_shape
Shape of a complete sample (possibly subset or squeezed).

samples_per_frame
Number of complete samples per frame.

squeeze
Whether data arrays have dimensions with length unity removed.

120 Chapter 5. VDIF

https://docs.python.org/3/library/constants.html#False


baseband Documentation, Release 3.1.0

If True, data read out has such dimensions removed, and data passed in for writing has them inserted.

start_time
Start time of the file.

See also time for the time of the sample pointer’s current offset.

subset
Specific components of the complete sample to decode.

The order of dimensions is the same as for sample_shape. Set by the class initializer.

time
Time of the sample pointer’s current offset in file.

See also start_time for the start time of the file.

verify
Whether to do consistency checks on frames being read.

Methods Documentation

close(self)

tell(self, unit=None)
Current offset in the file.

Parameters

unit
[Unit or str, optional] Time unit the offset should be returned in. By default, no unit is
used, i.e., an integer enumerating samples is returned. For the special string ‘time’, the
absolute time is calculated.

Returns

offset
[int, Quantity, or Time] Offset in current file (or time at current position).

write(self, data, valid=True)
Write data, buffering by frames as needed.

Parameters

data
[ndarray] Piece of data to be written, with sample dimensions as given by sample_shape.
This should be properly scaled to make best use of the dynamic range delivered by the
encoding.

valid
[bool, optional] Whether the current data are valid. Default: True.

5.4. Reference/API 121

https://docs.python.org/3/library/constants.html#True
http://docs.astropy.org/en/stable/api/astropy.units.Unit.html#astropy.units.Unit
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Class Inheritance Diagram

VDIFFileReaderVLBIFileReaderBase

VDIFFileWriter

VLBIFileBase

VDIFStreamBase

VDIFStreamReader

VDIFStreamWriter

VLBIStreamBase

VLBIStreamReaderBase

VLBIStreamWriterBase

122 Chapter 5. VDIF



CHAPTER

SIX

MARK 5B

The Mark 5B format is the output format of the Mark 5B disk-based VLBI data system. It is described in its design
specifications.

6.1 File Structure

Each data frame consists of a header consisting of four 32-bit words (16 bytes) followed by a payload of 2500 32-bit
words (10000 bytes). The header contains a sync word, frame number, and timestamp (accurate to 1 ms), as well
as user-specified data; see Sec. 1 of the design specifications for details. The payload supports 2𝑛 bit streams, for
0 ≤ 𝑛 ≤ 5, and the first sample of each stream corresponds precisely to the header time. elementary samples may
be 1 or 2 bits in size, with the latter being stored in two successive bit streams. The number of channels is equal to
the number of bit-streams divided by the number of bits per elementary sample (Baseband currently only supports
files where all bit-streams are active). Files begin at a header (unlike for Mark 4), and an integer number of frames fit
within 1 second.

The Mark 5B system also outputs files with the active bit-stream mask, number of frames per second, and observational
metadata (Sec. 1.3 of the design specifications). Baseband does not yet use these files, and instead requires the user
specify, for example, the sample rate.

6.2 Usage

This section covers reading and writing Mark 5B files with Baseband; general usage can be found under the Us-
ing Baseband section. For situations in which one is unsure of a file’s format, Baseband features the general
baseband.open and baseband.file_info functions, which are also discussed in Using Baseband. The examples
below use the small sample file baseband/data/sample.m5b, and the numpy, astropy.units, astropy.time.Time,
and baseband.mark5b modules:

>>> import numpy as np
>>> import astropy.units as u
>>> from astropy.time import Time
>>> from baseband import mark5b
>>> from baseband.data import SAMPLE_MARK5B

Opening a Mark 5B file with open in binary mode provides a normal file reader extended with methods to read a
Mark5BFrame. The number of channels, kiloday (thousands of MJD) and number of bits per sample must all be passed
when using read_frame:

>>> fb = mark5b.open(SAMPLE_MARK5B, 'rb', kday=56000, nchan=8)
>>> frame = fb.read_frame()

(continues on next page)

123

https://www.haystack.mit.edu/tech/vlbi/mark5/mark5_memos/019.pdf
https://www.haystack.mit.edu/tech/vlbi/mark5/mark5_memos/019.pdf
https://www.haystack.mit.edu/tech/vlbi/mark5/mark5_memos/019.pdf
https://www.haystack.mit.edu/tech/vlbi/mark5/mark5_memos/019.pdf
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
http://docs.astropy.org/en/stable/units/index.html#module-astropy.units
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time


baseband Documentation, Release 3.1.0

(continued from previous page)

>>> frame.shape
(5000, 8)
>>> fb.close()

Our sample file has 2-bit component samples, which is also the default for read_frame, so it does not need to be
passed. Also, we may pass a reference Time object within 500 days of the observation start time to ref_time, rather
than kday.

Opening as a stream wraps the low-level routines such that reading and writing is in units of samples. It also provides
access to header information. Here, we also must provide nchan, sample_rate, and ref_time or kday:

>>> fh = mark5b.open(SAMPLE_MARK5B, 'rs', sample_rate=32*u.MHz, nchan=8,
... ref_time=Time('2014-06-13 12:00:00'))
>>> fh
<Mark5BStreamReader name=... offset=0

sample_rate=32.0 MHz, samples_per_frame=5000,
sample_shape=SampleShape(nchan=8), bps=2,
start_time=2014-06-13T05:30:01.000000000>

>>> header0 = fh.header0 # To be used for writing, below.
>>> d = fh.read(10000)
>>> d.shape
(10000, 8)
>>> d[0, :3]
array([-3.316505, -1. , 1. ], dtype=float32)
>>> fh.close()

When writing to file, we again need to pass in sample_rate and nchan, though time can either be passed explicitly or
inferred from the header:

>>> fw = mark5b.open('test.m5b', 'ws', header0=header0,
... sample_rate=32*u.MHz, nchan=8)
>>> fw.write(d)
>>> fw.close()
>>> fh = mark5b.open('test.m5b', 'rs', sample_rate=32*u.MHz,
... kday=57000, nchan=8)
>>> np.all(fh.read() == d)
True
>>> fh.close()

6.3 Reference/API

6.3.1 baseband.mark5b Package

Mark5B VLBI data reader.

Code inspired by Walter Brisken’s mark5access. See https://github.com/demorest/mark5access.

Also, for the Mark5B design, see https://www.haystack.mit.edu/tech/vlbi/mark5/mark5_memos/019.pdf

124 Chapter 6. MARK 5B

http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://github.com/demorest/mark5access
https://www.haystack.mit.edu/tech/vlbi/mark5/mark5_memos/019.pdf


baseband Documentation, Release 3.1.0

Functions

open(name[, mode]) Open Mark5B file(s) for reading or writing.

open

baseband.mark5b.open(name, mode='rs', **kwargs)
Open Mark5B file(s) for reading or writing.

Opened as a binary file, one gets a wrapped filehandle that adds methods to read/write a frame. Opened as a
stream, the handle is wrapped further, with methods such as reading and writing to the file as if it were a stream
of samples.

Parameters

name
[str or filehandle, or sequence of str] File name, filehandle, or sequence of file names (see
Notes).

mode
[{‘rb’, ‘wb’, ‘rs’, or ‘ws’}, optional] Whether to open for reading or writing, and as a regular
binary file or as a stream. Default: ‘rs’, for reading a stream.

**kwargs
Additional arguments when opening the file as a stream.

— For reading a stream
[(see Mark5BStreamReader)]

sample_rate
[Quantity, optional] Number of complete samples per second, i.e. the rate at which each
channel is sampled. If None (default), will be inferred from scanning one second of the file
or, failing that, using the time difference between two consecutive frames.

kday
[int or None] Explicit thousands of MJD of the observation start time (eg. 57000 for MJD
57999), used to infer the full MJD from the header’s time information. Can instead pass an
approximate ref_time.

ref_time
[Time or None] Reference time within 500 days of the observation start time, used to infer
the full MJD. Only used if kday is not given.

nchan
[int, optional] Number of channels. Default: 1.

bps
[int, optional] Bits per elementary sample. Default: 2.

squeeze
[bool, optional] If True (default), remove any dimensions of length unity from decoded data.

subset
[indexing object, optional] Specific channels of the complete sample to decode (after possi-
ble squeezing). If an empty tuple (default), all channels are read.

fill_value
[float or complex] Value to use for invalid or missing data. Default: 0.

6.3. Reference/API 125

http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
https://docs.python.org/3/library/constants.html#None
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

verify
[bool or ‘fix’, optional] Whether to do basic checks of frame integrity when reading. De-
fault: ‘fix’, which implies basic verification and replacement of gaps with zeros.

— For writing a stream
[(see Mark5BStreamWriter)]

header0
[Mark5BHeader] Header for the first frame, holding time information, etc. Can instead give
keyword arguments to construct a header (see **kwargs).

sample_rate
[Quantity] Number of complete samples per second, i.e. the rate at which each channel is
sampled. Needed to calculate header timestamps.

nchan
[int, optional] Number of channels. Default: 1.

bps
[int, optional] Bits per elementary sample. Default: 2.

squeeze
[bool, optional] If True (default), writer accepts squeezed arrays as input, and adds channel
and thread dimensions if they have length unity.

file_size
[int or None, optional] When writing to a sequence of files, the maximum size of one file in
bytes. If None (default), the file size is unlimited, and only the first file will be written to.

**kwargs
If no header is given, an attempt is made to construct one with any further keyword argu-
ments. See Mark5BStreamWriter.

Returns

Filehandle
Mark5BFileReader or Mark5BFileWriter (binary), or Mark5BStreamReader or
Mark5BStreamWriter (stream).

Notes

One can also pass to name a list, tuple, or subclass of FileNameSequencer. For writing to multiple files,
the file_size keyword must be passed or only the first file will be written to. One may also pass in a
sequentialfile object (opened in ‘rb’ mode for reading or ‘w+b’ for writing), though for typical use cases it
is practically identical to passing in a list or template.

Classes

Mark5BFrame(header, payload[, valid, verify]) Representation of a Mark 5B frame, consisting of a
header and payload.

Mark5BHeader(words[, kday, ref_time, verify]) Decoder/encoder of a Mark5B Frame Header.
Mark5BPayload(words[, nchan, bps, complex_data]) Container for decoding and encoding VDIF payloads.

126 Chapter 6. MARK 5B

http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None


baseband Documentation, Release 3.1.0

Mark5BFrame

class baseband.mark5b.Mark5BFrame(header, payload, valid=None, verify=True)
Bases: baseband.vlbi_base.frame.VLBIFrameBase

Representation of a Mark 5B frame, consisting of a header and payload.

Parameters

header
[Mark5BHeader] Wrapper around the encoded header words, providing access to the header
information.

payload
[Mark5BPayload] Wrapper around the payload, provding mechanisms to decode it.

valid
[bool or None] Whether the data are valid. If None (default), the validity will be determined
by checking whether the payload consists of the fill pattern 0x11223344.

verify
[bool] Whether to do basic verification of integrity (default: True)

Notes

The Frame can also be read instantiated using class methods:

fromfile : read header and payload from a filehandle

fromdata : encode data as payload

Of course, one can also do the opposite:

tofile : method to write header and payload to filehandle

data : property that yields full decoded payload

A number of properties are defined: shape, dtype and size are the shape, type and number of complete samples
of the data array, and nbytes the frame size in bytes. Furthermore, the frame acts as a dictionary, with keys
those of the header. Any attribute that is not defined on the frame itself, such as .time will be looked up on the
header as well.

Attributes Summary

data Full decoded frame.
dtype Numeric type of the frame data.
fill_value Value to replace invalid data in the frame.
nbytes Size of the encoded frame in bytes.
ndim Number of dimensions of the frame data.
sample_shape Shape of a sample in the frame (nchan,).
shape Shape of the frame data.
size Total number of component samples in the frame

data.
valid Whether frame contains valid data.

6.3. Reference/API 127

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Methods Summary

fromdata(data[, header, bps, valid, verify]) Construct frame from data and header.
fromfile(fh[, kday, ref_time, nchan, bps, . . . ]) Read a frame from a filehandle.
keys(self)
tofile(self, fh) Write encoded frame to filehandle.
verify(self) Simple verification.

Attributes Documentation

data
Full decoded frame.

dtype
Numeric type of the frame data.

fill_value
Value to replace invalid data in the frame.

nbytes
Size of the encoded frame in bytes.

ndim
Number of dimensions of the frame data.

sample_shape
Shape of a sample in the frame (nchan,).

shape
Shape of the frame data.

size
Total number of component samples in the frame data.

valid
Whether frame contains valid data.

Methods Documentation

classmethod fromdata(data, header=None, bps=2, valid=True, verify=True, **kwargs)
Construct frame from data and header.

Parameters

data
[ndarray] Array holding data to be encoded.

header
[Mark5BHeader or None] If not given, will attempt to generate one using the keywords.

bps
[int] Bits per elementary sample. Default: 2.

valid
[bool] Whether the data are valid (default: True). If not, the payload will be set to a fill
pattern.

128 Chapter 6. MARK 5B

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

verify
[bool] Whether to do basic checks of frame integrity (default: True).

classmethod fromfile(fh, kday=None, ref_time=None, nchan=1, bps=2, valid=None, verify=True)
Read a frame from a filehandle.

Parameters

fh
[filehandle] To read the header and payload from.

kday
[int or None] Explicit thousands of MJD of the observation time. Can instead pass an
approximate ref_time.

ref_time
[Time or None] Reference time within 500 days of the observation time, used to infer the
full MJD. Used only if kday is not given.

nchan
[int, optional] Number of channels. Default: 1.

bps
[int, optional] Bits per elementary sample. Default: 2.

verify
[bool] Whether to do basic checks of frame integrity (default: True).

keys(self)

tofile(self, fh)
Write encoded frame to filehandle.

verify(self)
Simple verification. To be added to by subclasses.

Mark5BHeader

class baseband.mark5b.Mark5BHeader(words, kday=None, ref_time=None, verify=True)
Bases: baseband.vlbi_base.header.VLBIHeaderBase

Decoder/encoder of a Mark5B Frame Header.

See page 15 of https://www.haystack.mit.edu/tech/vlbi/mark5/docs/Mark%205B%20users%20manual.pdf

Parameters

words
[tuple of int, or None] Four 32-bit unsigned int header words. If None, set to a tuple of zeros
for later initialisation.

kday
[int or None] Explicit thousands of MJD of the observation time (needed to remove ambi-
guity in the Mark 5B time stamp). Can instead pass an approximate ref_time.

ref_time
[Time or None] Reference time within 500 days of the observation time, used to infer the
full MJD. Used only if kday is not given.

6.3. Reference/API 129

https://docs.python.org/3/library/constants.html#True
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://docs.python.org/3/library/constants.html#True
https://www.haystack.mit.edu/tech/vlbi/mark5/docs/Mark%205B%20users%20manual.pdf
https://docs.python.org/3/library/constants.html#None
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time


baseband Documentation, Release 3.1.0

verify
[bool, optional] Whether to do basic verification of integrity. Default: True.

Returns

header
[Mark5BHeader]

Attributes Summary

fraction Fractional seconds (decoded from ‘bcd_fraction’).
frame_nbytes Size of the frame in bytes.
jday Last three digits of MJD (decoded from ‘bcd_jday’).
kday Thousands of MJD, to complement jday from

header.
mutable Whether the header can be modified.
nbytes Size of the header in bytes.
payload_nbytes Size of the payload in bytes (10000 for Mark5B).
seconds Integer seconds on day (decoded from

‘bcd_seconds’).
time Convert year, BCD time code to Time object.

Methods Summary

copy(self, \*\*kwargs) Create a mutable and independent copy of the header.
fromfile(fh, \*args, \*\*kwargs) Read VLBI Header from file.
fromkeys(\*args, \*\*kwargs) Initialise a header from parsed values.
fromvalues(\*[, verify]) Initialise a header from parsed values.
get_time(self[, frame_rate]) Convert year, BCD time code to Time object.
infer_kday(self, ref_time) Uses a reference time to set a header’s kday.
invariant_pattern([invariants]) Pattern and mask shared between headers of a type

or stream.
invariants() Set of keys of invariant header parts.
keys(self) All keys defined for this header.
set_time(self, time[, frame_rate]) Convert Time object to BCD timestamp elements

and ‘frame_nr’.
tofile(self, fh) Write VLBI frame header to filehandle.
update(self, \*[, crc, verify]) Update the header by setting keywords or properties.
verify(self) Verify header integrity.

130 Chapter 6. MARK 5B

https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Attributes Documentation

fraction
Fractional seconds (decoded from ‘bcd_fraction’).

The fraction is stored to 0.1 ms accuracy. Following mark5access, this is “unrounded” to give the exact
time of the start of the frame for any total bit rate below 512 Mbps. For rates above this value, it is no
longer guaranteed that subsequent frames have unique rates.

Note to the above: since a Mark5B frame contains 80000 bits, the total bit rate for which times can be
unique would in principle be 800 Mbps. However, standard VLBI only uses bit rates that are powers of 2
in MHz.

frame_nbytes
Size of the frame in bytes.

jday
Last three digits of MJD (decoded from ‘bcd_jday’).

kday = None
Thousands of MJD, to complement jday from header.

mutable
Whether the header can be modified.

nbytes
Size of the header in bytes.

payload_nbytes
Size of the payload in bytes (10000 for Mark5B).

seconds
Integer seconds on day (decoded from ‘bcd_seconds’).

time
Convert year, BCD time code to Time object.

Calculate time using jday, seconds, and fraction properties (which reflect the bcd-encoded ‘bcd_jday’,
‘bcd_seconds’ and ‘bcd_fraction’ header items), plus kday from the initialisation. See https://www.
haystack.mit.edu/tech/vlbi/mark5/docs/Mark%205B%20users%20manual.pdf

Note that some non-compliant files do not have ‘bcd_fraction’ set. For those, the time can still be calculated
using the header’s ‘frame_nr’ by passing in a frame rate.

Furthermore, fractional seconds are stored only to 0.1 ms accuracy. In the code, this is “unrounded” to
give the exact time of the start of the frame for any total bit rate below 512 Mbps. For higher rates, it is no
longer guaranteed that subsequent frames have unique fraction, and one should pass in an explicit frame
rate instead.

Parameters

frame_rate
[Quantity, optional] Used to calculate the fractional second from the frame number in-
stead of from the header’s fraction.

Returns

Time

6.3. Reference/API 131

https://www.haystack.mit.edu/tech/vlbi/mark5/docs/Mark%205B%20users%20manual.pdf
https://www.haystack.mit.edu/tech/vlbi/mark5/docs/Mark%205B%20users%20manual.pdf
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time


baseband Documentation, Release 3.1.0

Methods Documentation

copy(self, **kwargs)
Create a mutable and independent copy of the header.

Keyword arguments can be passed on as needed by possible subclasses.

classmethod fromfile(fh, *args, **kwargs)
Read VLBI Header from file.

Arguments are the same as for class initialisation. The header constructed will be immutable.

classmethod fromkeys(*args, **kwargs)
Initialise a header from parsed values.

Like fromvalues, but without any interpretation of keywords.

Raises

KeyError
[if not all keys required are present in kwargs]

classmethod fromvalues(*, verify=True, **kwargs)
Initialise a header from parsed values.

Here, the parsed values must be given as keyword arguments, i.e., for any header = cls(<data>), cls.
fromvalues(**header) == header.

However, unlike for the Mark5BHeader.fromkeys() class method, data can also be set using arguments
named after methods, such as jday and seconds.

Given defaults:

sync_pattern : 0xABADDEED

Values set by other keyword arguments (if present):

bcd_jday : from jday or time bcd_seconds : from seconds or time bcd_fraction : from fraction or
time (may need frame_rate) frame_nr : from time (may need frame_rate)

get_time(self, frame_rate=None)
Convert year, BCD time code to Time object.

Calculate time using jday, seconds, and fraction properties (which reflect the bcd-encoded ‘bcd_jday’,
‘bcd_seconds’ and ‘bcd_fraction’ header items), plus kday from the initialisation. See https://www.
haystack.mit.edu/tech/vlbi/mark5/docs/Mark%205B%20users%20manual.pdf

Note that some non-compliant files do not have ‘bcd_fraction’ set. For those, the time can still be calculated
using the header’s ‘frame_nr’ by passing in a frame rate.

Furthermore, fractional seconds are stored only to 0.1 ms accuracy. In the code, this is “unrounded” to
give the exact time of the start of the frame for any total bit rate below 512 Mbps. For higher rates, it is no
longer guaranteed that subsequent frames have unique fraction, and one should pass in an explicit frame
rate instead.

Parameters

frame_rate
[Quantity, optional] Used to calculate the fractional second from the frame number in-
stead of from the header’s fraction.

132 Chapter 6. MARK 5B

https://www.haystack.mit.edu/tech/vlbi/mark5/docs/Mark%205B%20users%20manual.pdf
https://www.haystack.mit.edu/tech/vlbi/mark5/docs/Mark%205B%20users%20manual.pdf
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity


baseband Documentation, Release 3.1.0

Returns

Time

infer_kday(self, ref_time)
Uses a reference time to set a header’s kday.

Parameters

ref_time
[Time] Reference time within 500 days of the observation time.

classmethod invariant_pattern(invariants=None, **kwargs)
Pattern and mask shared between headers of a type or stream.

This is mostly for use inside locate_frames().

Parameters

invariants
[set of str, optional] Set of keys to header parts that are shared between all headers of a
given type or within a given stream/file. Default: from invariants().

**kwargs
Keyword arguments needed to instantiate an empty header. (Mostly for Mark 4).

Returns

pattern
[list of int] The pattern that is shared between headers. If called on an instance, just the
header words; if called on a class, words with defaults for the relevant parts set.

mask
[list of int] For each entry in pattern a bit mask with bits set for the parts that are invariant.

classmethod invariants()
Set of keys of invariant header parts.

On the class, this returns keys of parts that are shared by all headers for the type, on an instance, those that
are shared with other headers in the same file.

If neither are defined, returns ‘sync_pattern’ if the header containts that key.

keys(self)
All keys defined for this header.

set_time(self, time, frame_rate=None)
Convert Time object to BCD timestamp elements and ‘frame_nr’.

For non-integer seconds, the frame number will be calculated if not given explicitly. Doing so requires the
frame rate.

Parameters

time
[Time] The time to use for this header.

6.3. Reference/API 133

http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time


baseband Documentation, Release 3.1.0

frame_rate
[Quantity, optional] For calculating ‘frame_nr’ from the fractional seconds.

tofile(self, fh)
Write VLBI frame header to filehandle.

update(self, *, crc=None, verify=True, **kwargs)
Update the header by setting keywords or properties.

Here, any keywords matching header keys are applied first, and any remaining ones are used to set header
properties, in the order set by the class (in _properties).

Parameters

crc
[int or None, optional] If None (default), recalculate the CRC after updating.

verify
[bool, optional] If True (default), verify integrity after updating.

**kwargs
Arguments used to set keywords and properties.

verify(self)
Verify header integrity.

Mark5BPayload

class baseband.mark5b.Mark5BPayload(words, nchan=1, bps=2, complex_data=False)
Bases: baseband.vlbi_base.payload.VLBIPayloadBase

Container for decoding and encoding VDIF payloads.

Parameters

words
[ndarray] Array containg LSB unsigned words (with the right size) that encode the payload.

nchan
[int, optional] Number of channels. Default: 1.

bps
[int, optional] Bits per elementary sample. Default: 2.

Attributes Summary

data Full decoded payload.
dtype Numeric type of the decoded data array.
nbytes Size of the payload in bytes.
ndim Number of dimensions of the decoded data array.
shape Shape of the decoded data array.
size Total number of component samples in the decoded

data array.

134 Chapter 6. MARK 5B

http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


baseband Documentation, Release 3.1.0

Methods Summary

fromdata(data[, bps]) Encode data as payload, using a given number of bits
per sample.

fromfile(fh, \*args[, payload_nbytes]) Read payload from filehandle and decode it into data.
tofile(self, fh) Write payload to filehandle.

Attributes Documentation

data
Full decoded payload.

dtype
Numeric type of the decoded data array.

nbytes
Size of the payload in bytes.

ndim
Number of dimensions of the decoded data array.

shape
Shape of the decoded data array.

size
Total number of component samples in the decoded data array.

Methods Documentation

classmethod fromdata(data, bps=2)
Encode data as payload, using a given number of bits per sample.

It is assumed that the last dimension is the number of channels.

classmethod fromfile(fh, *args, payload_nbytes=None, **kwargs)
Read payload from filehandle and decode it into data.

Parameters

fh
[filehandle] From which data is read.

payload_nbytes
[int] Number of bytes to read (default: as given in cls._nbytes).

Any other (keyword) arguments are passed on to the class initialiser.

tofile(self, fh)
Write payload to filehandle.

6.3. Reference/API 135



baseband Documentation, Release 3.1.0

Class Inheritance Diagram

Mark5BFrameVLBIFrameBase

Mark5BHeaderVLBIHeaderBase

Mark5BPayloadVLBIPayloadBase

6.3.2 baseband.mark5b.header Module

Definitions for VLBI Mark5B Headers.

Implements a Mark5BHeader class used to store header words, and decode/encode the information therein.

For the specification, see https://www.haystack.mit.edu/tech/vlbi/mark5/docs/Mark%205B%20users%20manual.pdf

Classes

Mark5BHeader(words[, kday, ref_time, verify]) Decoder/encoder of a Mark5B Frame Header.

Mark5BHeader

class baseband.mark5b.header.Mark5BHeader(words, kday=None, ref_time=None, verify=True)
Bases: baseband.vlbi_base.header.VLBIHeaderBase

Decoder/encoder of a Mark5B Frame Header.

See page 15 of https://www.haystack.mit.edu/tech/vlbi/mark5/docs/Mark%205B%20users%20manual.pdf

Parameters

words
[tuple of int, or None] Four 32-bit unsigned int header words. If None, set to a tuple of zeros
for later initialisation.

kday
[int or None] Explicit thousands of MJD of the observation time (needed to remove ambi-
guity in the Mark 5B time stamp). Can instead pass an approximate ref_time.

ref_time
[Time or None] Reference time within 500 days of the observation time, used to infer the
full MJD. Used only if kday is not given.

136 Chapter 6. MARK 5B

https://www.haystack.mit.edu/tech/vlbi/mark5/docs/Mark%205B%20users%20manual.pdf
https://www.haystack.mit.edu/tech/vlbi/mark5/docs/Mark%205B%20users%20manual.pdf
https://docs.python.org/3/library/constants.html#None
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time


baseband Documentation, Release 3.1.0

verify
[bool, optional] Whether to do basic verification of integrity. Default: True.

Returns

header
[Mark5BHeader]

Attributes Summary

fraction Fractional seconds (decoded from ‘bcd_fraction’).
frame_nbytes Size of the frame in bytes.
jday Last three digits of MJD (decoded from ‘bcd_jday’).
kday Thousands of MJD, to complement jday from

header.
mutable Whether the header can be modified.
nbytes Size of the header in bytes.
payload_nbytes Size of the payload in bytes (10000 for Mark5B).
seconds Integer seconds on day (decoded from

‘bcd_seconds’).
time Convert year, BCD time code to Time object.

Methods Summary

copy(self, \*\*kwargs) Create a mutable and independent copy of the header.
fromfile(fh, \*args, \*\*kwargs) Read VLBI Header from file.
fromkeys(\*args, \*\*kwargs) Initialise a header from parsed values.
fromvalues(\*[, verify]) Initialise a header from parsed values.
get_time(self[, frame_rate]) Convert year, BCD time code to Time object.
infer_kday(self, ref_time) Uses a reference time to set a header’s kday.
invariant_pattern([invariants]) Pattern and mask shared between headers of a type

or stream.
invariants() Set of keys of invariant header parts.
keys(self) All keys defined for this header.
set_time(self, time[, frame_rate]) Convert Time object to BCD timestamp elements

and ‘frame_nr’.
tofile(self, fh) Write VLBI frame header to filehandle.
update(self, \*[, crc, verify]) Update the header by setting keywords or properties.
verify(self) Verify header integrity.

6.3. Reference/API 137

https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Attributes Documentation

fraction
Fractional seconds (decoded from ‘bcd_fraction’).

The fraction is stored to 0.1 ms accuracy. Following mark5access, this is “unrounded” to give the exact
time of the start of the frame for any total bit rate below 512 Mbps. For rates above this value, it is no
longer guaranteed that subsequent frames have unique rates.

Note to the above: since a Mark5B frame contains 80000 bits, the total bit rate for which times can be
unique would in principle be 800 Mbps. However, standard VLBI only uses bit rates that are powers of 2
in MHz.

frame_nbytes
Size of the frame in bytes.

jday
Last three digits of MJD (decoded from ‘bcd_jday’).

kday = None
Thousands of MJD, to complement jday from header.

mutable
Whether the header can be modified.

nbytes
Size of the header in bytes.

payload_nbytes
Size of the payload in bytes (10000 for Mark5B).

seconds
Integer seconds on day (decoded from ‘bcd_seconds’).

time
Convert year, BCD time code to Time object.

Calculate time using jday, seconds, and fraction properties (which reflect the bcd-encoded ‘bcd_jday’,
‘bcd_seconds’ and ‘bcd_fraction’ header items), plus kday from the initialisation. See https://www.
haystack.mit.edu/tech/vlbi/mark5/docs/Mark%205B%20users%20manual.pdf

Note that some non-compliant files do not have ‘bcd_fraction’ set. For those, the time can still be calculated
using the header’s ‘frame_nr’ by passing in a frame rate.

Furthermore, fractional seconds are stored only to 0.1 ms accuracy. In the code, this is “unrounded” to
give the exact time of the start of the frame for any total bit rate below 512 Mbps. For higher rates, it is no
longer guaranteed that subsequent frames have unique fraction, and one should pass in an explicit frame
rate instead.

Parameters

frame_rate
[Quantity, optional] Used to calculate the fractional second from the frame number in-
stead of from the header’s fraction.

Returns

Time

138 Chapter 6. MARK 5B

https://www.haystack.mit.edu/tech/vlbi/mark5/docs/Mark%205B%20users%20manual.pdf
https://www.haystack.mit.edu/tech/vlbi/mark5/docs/Mark%205B%20users%20manual.pdf
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time


baseband Documentation, Release 3.1.0

Methods Documentation

copy(self, **kwargs)
Create a mutable and independent copy of the header.

Keyword arguments can be passed on as needed by possible subclasses.

classmethod fromfile(fh, *args, **kwargs)
Read VLBI Header from file.

Arguments are the same as for class initialisation. The header constructed will be immutable.

classmethod fromkeys(*args, **kwargs)
Initialise a header from parsed values.

Like fromvalues, but without any interpretation of keywords.

Raises

KeyError
[if not all keys required are present in kwargs]

classmethod fromvalues(*, verify=True, **kwargs)
Initialise a header from parsed values.

Here, the parsed values must be given as keyword arguments, i.e., for any header = cls(<data>), cls.
fromvalues(**header) == header.

However, unlike for the Mark5BHeader.fromkeys() class method, data can also be set using arguments
named after methods, such as jday and seconds.

Given defaults:

sync_pattern : 0xABADDEED

Values set by other keyword arguments (if present):

bcd_jday : from jday or time bcd_seconds : from seconds or time bcd_fraction : from fraction or
time (may need frame_rate) frame_nr : from time (may need frame_rate)

get_time(self, frame_rate=None)
Convert year, BCD time code to Time object.

Calculate time using jday, seconds, and fraction properties (which reflect the bcd-encoded ‘bcd_jday’,
‘bcd_seconds’ and ‘bcd_fraction’ header items), plus kday from the initialisation. See https://www.
haystack.mit.edu/tech/vlbi/mark5/docs/Mark%205B%20users%20manual.pdf

Note that some non-compliant files do not have ‘bcd_fraction’ set. For those, the time can still be calculated
using the header’s ‘frame_nr’ by passing in a frame rate.

Furthermore, fractional seconds are stored only to 0.1 ms accuracy. In the code, this is “unrounded” to
give the exact time of the start of the frame for any total bit rate below 512 Mbps. For higher rates, it is no
longer guaranteed that subsequent frames have unique fraction, and one should pass in an explicit frame
rate instead.

Parameters

frame_rate
[Quantity, optional] Used to calculate the fractional second from the frame number in-
stead of from the header’s fraction.

6.3. Reference/API 139

https://www.haystack.mit.edu/tech/vlbi/mark5/docs/Mark%205B%20users%20manual.pdf
https://www.haystack.mit.edu/tech/vlbi/mark5/docs/Mark%205B%20users%20manual.pdf
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity


baseband Documentation, Release 3.1.0

Returns

Time

infer_kday(self, ref_time)
Uses a reference time to set a header’s kday.

Parameters

ref_time
[Time] Reference time within 500 days of the observation time.

classmethod invariant_pattern(invariants=None, **kwargs)
Pattern and mask shared between headers of a type or stream.

This is mostly for use inside locate_frames().

Parameters

invariants
[set of str, optional] Set of keys to header parts that are shared between all headers of a
given type or within a given stream/file. Default: from invariants().

**kwargs
Keyword arguments needed to instantiate an empty header. (Mostly for Mark 4).

Returns

pattern
[list of int] The pattern that is shared between headers. If called on an instance, just the
header words; if called on a class, words with defaults for the relevant parts set.

mask
[list of int] For each entry in pattern a bit mask with bits set for the parts that are invariant.

classmethod invariants()
Set of keys of invariant header parts.

On the class, this returns keys of parts that are shared by all headers for the type, on an instance, those that
are shared with other headers in the same file.

If neither are defined, returns ‘sync_pattern’ if the header containts that key.

keys(self)
All keys defined for this header.

set_time(self, time, frame_rate=None)
Convert Time object to BCD timestamp elements and ‘frame_nr’.

For non-integer seconds, the frame number will be calculated if not given explicitly. Doing so requires the
frame rate.

Parameters

time
[Time] The time to use for this header.

140 Chapter 6. MARK 5B

http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time


baseband Documentation, Release 3.1.0

frame_rate
[Quantity, optional] For calculating ‘frame_nr’ from the fractional seconds.

tofile(self, fh)
Write VLBI frame header to filehandle.

update(self, *, crc=None, verify=True, **kwargs)
Update the header by setting keywords or properties.

Here, any keywords matching header keys are applied first, and any remaining ones are used to set header
properties, in the order set by the class (in _properties).

Parameters

crc
[int or None, optional] If None (default), recalculate the CRC after updating.

verify
[bool, optional] If True (default), verify integrity after updating.

**kwargs
Arguments used to set keywords and properties.

verify(self)
Verify header integrity.

Variables

CRC16 CRC polynomial used for Mark 5B Headers, as a check
on the time code.

crc16(stream) Cyclic Redundancy Check.

CRC16

baseband.mark5b.header.CRC16 = 98309
CRC polynomial used for Mark 5B Headers, as a check on the time code.

x^16 + x^15 + x^2 + 1, i.e., 0x18005. See page 11 of https://www.haystack.mit.edu/tech/vlbi/mark5/docs/230.
3.pdf (defined there for VLBA headers).

This is also CRC-16-IBM mentioned in https://en.wikipedia.org/wiki/Cyclic_redundancy_check

crc16

baseband.mark5b.header.crc16(stream) = <baseband.vlbi_base.utils.CRC object>
Cyclic Redundancy Check.

See https://en.wikipedia.org/wiki/Cyclic_redundancy_check

Once initialised, the instance can be used as a function that calculates the CRC, or one can use the check method
to verify that the CRC in the lower bits of a value is correct.

Parameters

6.3. Reference/API 141

http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://www.haystack.mit.edu/tech/vlbi/mark5/docs/230.3.pdf
https://www.haystack.mit.edu/tech/vlbi/mark5/docs/230.3.pdf
https://en.wikipedia.org/wiki/Cyclic_redundancy_check
https://en.wikipedia.org/wiki/Cyclic_redundancy_check


baseband Documentation, Release 3.1.0

polynomial
[int] Binary encoded CRC divisor. For instance, that used by Mark 5B headers is 0x18005,
or x^16 + x^15 + x^2 + 1.

See also:

baseband.vlbi_base.utils.CRCStack
for calculating CRC on arrays where each entry represents a bit.

Class Inheritance Diagram

Mark5BHeaderVLBIHeaderBase

6.3.3 baseband.mark5b.payload Module

Definitions for VLBI Mark 5B payloads.

Implements a Mark5BPayload class used to store payload words, and decode to or encode from a data array.

For the specification, see https://www.haystack.mit.edu/tech/vlbi/mark5/docs/Mark%205B%20users%20manual.pdf

Functions

init_luts() Set up the look-up tables for levels as a function of input
byte.

decode_1bit(words)
decode_2bit(words)
encode_1bit(values) Encodes values using 1 bit per sample, packing the re-

sult into bytes.
encode_2bit(values) Generic encoder for data stored using two bits.

init_luts

baseband.mark5b.payload.init_luts()
Set up the look-up tables for levels as a function of input byte.

For 1-bit mode, one has just the sign bit:

s value
0 +1
1 -1

142 Chapter 6. MARK 5B

https://www.haystack.mit.edu/tech/vlbi/mark5/docs/Mark%205B%20users%20manual.pdf


baseband Documentation, Release 3.1.0

For 2-bit mode, there is a sign and a magnitude, which encode:

m s value s*2+m
0 0 -Hi 0
0 1 +1 2
1 0 -1 1
1 1 +Hi 3

Note that the sign bit is flipped for 1-bit mode from what one might expect from the 2-bit encodings (at
least, as implemented in mark5access; the docs are rather unclear). For more details, see Table 13 in https:
//library.nrao.edu/public/memos/vlba/up/VLBASU_13.pdf and https://www.haystack.mit.edu/tech/vlbi/mark5/
docs/Mark%205B%20users%20manual.pdf Appendix A: sign always on even bit stream (0, 2, 4, . . . ), and
magnitude on adjacent odd stream (1, 3, 5, . . . ).

In the above table, the last column is the index in the linearly increasing table of levels (decoder_levels[2]).

decode_1bit

baseband.mark5b.payload.decode_1bit(words)

decode_2bit

baseband.mark5b.payload.decode_2bit(words)

encode_1bit

baseband.mark5b.payload.encode_1bit(values)
Encodes values using 1 bit per sample, packing the result into bytes.

encode_2bit

baseband.mark5b.payload.encode_2bit(values)
Generic encoder for data stored using two bits.

This returns an unsigned integer array containing encoded sample values that range from 0 to 3. The conversion
from floating point sample value to unsigned int is given below, with lv = TWO_BIT_1_SIGMA = 2.1745:

Input range Output
value < -lv 0
-lv < value < 0. 2

0. < value < lv
1

lv < value 3

This does not pack the samples into bytes.

6.3. Reference/API 143

https://library.nrao.edu/public/memos/vlba/up/VLBASU_13.pdf
https://library.nrao.edu/public/memos/vlba/up/VLBASU_13.pdf
https://www.haystack.mit.edu/tech/vlbi/mark5/docs/Mark%205B%20users%20manual.pdf
https://www.haystack.mit.edu/tech/vlbi/mark5/docs/Mark%205B%20users%20manual.pdf


baseband Documentation, Release 3.1.0

Classes

Mark5BPayload(words[, nchan, bps, complex_data]) Container for decoding and encoding VDIF payloads.

Mark5BPayload

class baseband.mark5b.payload.Mark5BPayload(words, nchan=1, bps=2, complex_data=False)
Bases: baseband.vlbi_base.payload.VLBIPayloadBase

Container for decoding and encoding VDIF payloads.

Parameters

words
[ndarray] Array containg LSB unsigned words (with the right size) that encode the payload.

nchan
[int, optional] Number of channels. Default: 1.

bps
[int, optional] Bits per elementary sample. Default: 2.

Attributes Summary

data Full decoded payload.
dtype Numeric type of the decoded data array.
nbytes Size of the payload in bytes.
ndim Number of dimensions of the decoded data array.
shape Shape of the decoded data array.
size Total number of component samples in the decoded

data array.

Methods Summary

fromdata(data[, bps]) Encode data as payload, using a given number of bits
per sample.

fromfile(fh, \*args[, payload_nbytes]) Read payload from filehandle and decode it into data.
tofile(self, fh) Write payload to filehandle.

Attributes Documentation

data
Full decoded payload.

dtype
Numeric type of the decoded data array.

nbytes
Size of the payload in bytes.

144 Chapter 6. MARK 5B

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


baseband Documentation, Release 3.1.0

ndim
Number of dimensions of the decoded data array.

shape
Shape of the decoded data array.

size
Total number of component samples in the decoded data array.

Methods Documentation

classmethod fromdata(data, bps=2)
Encode data as payload, using a given number of bits per sample.

It is assumed that the last dimension is the number of channels.

classmethod fromfile(fh, *args, payload_nbytes=None, **kwargs)
Read payload from filehandle and decode it into data.

Parameters

fh
[filehandle] From which data is read.

payload_nbytes
[int] Number of bytes to read (default: as given in cls._nbytes).

Any other (keyword) arguments are passed on to the class initialiser.

tofile(self, fh)
Write payload to filehandle.

Class Inheritance Diagram

Mark5BPayloadVLBIPayloadBase

6.3.4 baseband.mark5b.frame Module

Definitions for VLBI Mark 5B frames.

Implements a Mark5BFrame class that can be used to hold a header and a payload, providing access to the values
encoded in both.

For the specification, see https://www.haystack.mit.edu/tech/vlbi/mark5/docs/Mark%205B%20users%20manual.pdf

6.3. Reference/API 145

https://www.haystack.mit.edu/tech/vlbi/mark5/docs/Mark%205B%20users%20manual.pdf


baseband Documentation, Release 3.1.0

Classes

Mark5BFrame(header, payload[, valid, verify]) Representation of a Mark 5B frame, consisting of a
header and payload.

Mark5BFrame

class baseband.mark5b.frame.Mark5BFrame(header, payload, valid=None, verify=True)
Bases: baseband.vlbi_base.frame.VLBIFrameBase

Representation of a Mark 5B frame, consisting of a header and payload.

Parameters

header
[Mark5BHeader] Wrapper around the encoded header words, providing access to the header
information.

payload
[Mark5BPayload] Wrapper around the payload, provding mechanisms to decode it.

valid
[bool or None] Whether the data are valid. If None (default), the validity will be determined
by checking whether the payload consists of the fill pattern 0x11223344.

verify
[bool] Whether to do basic verification of integrity (default: True)

Notes

The Frame can also be read instantiated using class methods:

fromfile : read header and payload from a filehandle

fromdata : encode data as payload

Of course, one can also do the opposite:

tofile : method to write header and payload to filehandle

data : property that yields full decoded payload

A number of properties are defined: shape, dtype and size are the shape, type and number of complete samples
of the data array, and nbytes the frame size in bytes. Furthermore, the frame acts as a dictionary, with keys
those of the header. Any attribute that is not defined on the frame itself, such as .time will be looked up on the
header as well.

146 Chapter 6. MARK 5B

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Attributes Summary

data Full decoded frame.
dtype Numeric type of the frame data.
fill_value Value to replace invalid data in the frame.
nbytes Size of the encoded frame in bytes.
ndim Number of dimensions of the frame data.
sample_shape Shape of a sample in the frame (nchan,).
shape Shape of the frame data.
size Total number of component samples in the frame

data.
valid Whether frame contains valid data.

Methods Summary

fromdata(data[, header, bps, valid, verify]) Construct frame from data and header.
fromfile(fh[, kday, ref_time, nchan, bps, . . . ]) Read a frame from a filehandle.
keys(self)
tofile(self, fh) Write encoded frame to filehandle.
verify(self) Simple verification.

Attributes Documentation

data
Full decoded frame.

dtype
Numeric type of the frame data.

fill_value
Value to replace invalid data in the frame.

nbytes
Size of the encoded frame in bytes.

ndim
Number of dimensions of the frame data.

sample_shape
Shape of a sample in the frame (nchan,).

shape
Shape of the frame data.

size
Total number of component samples in the frame data.

valid
Whether frame contains valid data.

6.3. Reference/API 147



baseband Documentation, Release 3.1.0

Methods Documentation

classmethod fromdata(data, header=None, bps=2, valid=True, verify=True, **kwargs)
Construct frame from data and header.

Parameters

data
[ndarray] Array holding data to be encoded.

header
[Mark5BHeader or None] If not given, will attempt to generate one using the keywords.

bps
[int] Bits per elementary sample. Default: 2.

valid
[bool] Whether the data are valid (default: True). If not, the payload will be set to a fill
pattern.

verify
[bool] Whether to do basic checks of frame integrity (default: True).

classmethod fromfile(fh, kday=None, ref_time=None, nchan=1, bps=2, valid=None, verify=True)
Read a frame from a filehandle.

Parameters

fh
[filehandle] To read the header and payload from.

kday
[int or None] Explicit thousands of MJD of the observation time. Can instead pass an
approximate ref_time.

ref_time
[Time or None] Reference time within 500 days of the observation time, used to infer the
full MJD. Used only if kday is not given.

nchan
[int, optional] Number of channels. Default: 1.

bps
[int, optional] Bits per elementary sample. Default: 2.

verify
[bool] Whether to do basic checks of frame integrity (default: True).

keys(self)

tofile(self, fh)
Write encoded frame to filehandle.

verify(self)
Simple verification. To be added to by subclasses.

148 Chapter 6. MARK 5B

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Class Inheritance Diagram

Mark5BFrameVLBIFrameBase

6.3.5 baseband.mark5b.file_info Module

The Mark5BFileReaderInfo property.

Includes information about what is needed to calcuate times.

Classes

Mark5BFileReaderInfo([parent])

Mark5BFileReaderInfo

class baseband.mark5b.file_info.Mark5BFileReaderInfo(parent=None)
Bases: baseband.vlbi_base.file_info.VLBIFileReaderInfo

Attributes Summary

attr_names
bps Link to parent.bps
checks Link to checks
complex_data
decodable Whether decoding the first frame worked.
errors Link to errors
format The file format.
frame0 First frame from the file.
frame_rate Number of frames per unit time.
header0 Header of the first frame in the file.
kday Link to parent.kday
missing Link to missing
nchan Link to parent.nchan
number_of_frames Total number of frames.
readable Whether the file is readable and decodable.
ref_time Link to parent.ref_time
sample_rate Rate of complete samples per unit time.
sample_shape Dimensions of each complete sample.
samples_per_frame Number of complete samples in each frame.

Continued on next page

6.3. Reference/API 149



baseband Documentation, Release 3.1.0

Table 21 – continued from previous page
start_time Time of the first sample.
time_info Additional time info needed to get the start time.
warnings Link to warnings

Methods Summary

__call__(self) Create a dict with file information.

Attributes Documentation

attr_names = ('format', 'number_of_frames', 'frame_rate', 'sample_rate', 'samples_per_frame', 'sample_shape', 'bps', 'complex_data', 'start_time', 'readable', 'missing', 'checks', 'errors', 'warnings')

bps
Link to parent.bps

checks
Link to checks

complex_data = False

decodable
Whether decoding the first frame worked.

errors
Link to errors

format
The file format.

frame0
First frame from the file.

frame_rate
Number of frames per unit time.

header0
Header of the first frame in the file.

kday
Link to parent.kday

missing
Link to missing

nchan
Link to parent.nchan

number_of_frames
Total number of frames.

readable
Whether the file is readable and decodable.

ref_time
Link to parent.ref_time

150 Chapter 6. MARK 5B



baseband Documentation, Release 3.1.0

sample_rate
Rate of complete samples per unit time.

sample_shape
Dimensions of each complete sample.

samples_per_frame
Number of complete samples in each frame.

start_time
Time of the first sample.

time_info
Additional time info needed to get the start time.

warnings
Link to warnings

Methods Documentation

__call__(self)
Create a dict with file information.

This includes information about checks done, possible missing information, as well as possible warnings
and errors.

Class Inheritance Diagram

Mark5BFileReaderInfoVLBIFileReaderInfoVLBIInfoBase

6.3.6 baseband.mark5b.base Module

Functions

open(name[, mode]) Open Mark5B file(s) for reading or writing.

6.3. Reference/API 151



baseband Documentation, Release 3.1.0

open

baseband.mark5b.base.open(name, mode='rs', **kwargs)
Open Mark5B file(s) for reading or writing.

Opened as a binary file, one gets a wrapped filehandle that adds methods to read/write a frame. Opened as a
stream, the handle is wrapped further, with methods such as reading and writing to the file as if it were a stream
of samples.

Parameters

name
[str or filehandle, or sequence of str] File name, filehandle, or sequence of file names (see
Notes).

mode
[{‘rb’, ‘wb’, ‘rs’, or ‘ws’}, optional] Whether to open for reading or writing, and as a regular
binary file or as a stream. Default: ‘rs’, for reading a stream.

**kwargs
Additional arguments when opening the file as a stream.

— For reading a stream
[(see Mark5BStreamReader)]

sample_rate
[Quantity, optional] Number of complete samples per second, i.e. the rate at which each
channel is sampled. If None (default), will be inferred from scanning one second of the file
or, failing that, using the time difference between two consecutive frames.

kday
[int or None] Explicit thousands of MJD of the observation start time (eg. 57000 for MJD
57999), used to infer the full MJD from the header’s time information. Can instead pass an
approximate ref_time.

ref_time
[Time or None] Reference time within 500 days of the observation start time, used to infer
the full MJD. Only used if kday is not given.

nchan
[int, optional] Number of channels. Default: 1.

bps
[int, optional] Bits per elementary sample. Default: 2.

squeeze
[bool, optional] If True (default), remove any dimensions of length unity from decoded data.

subset
[indexing object, optional] Specific channels of the complete sample to decode (after possi-
ble squeezing). If an empty tuple (default), all channels are read.

fill_value
[float or complex] Value to use for invalid or missing data. Default: 0.

verify
[bool or ‘fix’, optional] Whether to do basic checks of frame integrity when reading. De-
fault: ‘fix’, which implies basic verification and replacement of gaps with zeros.

— For writing a stream
[(see Mark5BStreamWriter)]

152 Chapter 6. MARK 5B

http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
https://docs.python.org/3/library/constants.html#None
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

header0
[Mark5BHeader] Header for the first frame, holding time information, etc. Can instead give
keyword arguments to construct a header (see **kwargs).

sample_rate
[Quantity] Number of complete samples per second, i.e. the rate at which each channel is
sampled. Needed to calculate header timestamps.

nchan
[int, optional] Number of channels. Default: 1.

bps
[int, optional] Bits per elementary sample. Default: 2.

squeeze
[bool, optional] If True (default), writer accepts squeezed arrays as input, and adds channel
and thread dimensions if they have length unity.

file_size
[int or None, optional] When writing to a sequence of files, the maximum size of one file in
bytes. If None (default), the file size is unlimited, and only the first file will be written to.

**kwargs
If no header is given, an attempt is made to construct one with any further keyword argu-
ments. See Mark5BStreamWriter.

Returns

Filehandle
Mark5BFileReader or Mark5BFileWriter (binary), or Mark5BStreamReader or
Mark5BStreamWriter (stream).

Notes

One can also pass to name a list, tuple, or subclass of FileNameSequencer. For writing to multiple files,
the file_size keyword must be passed or only the first file will be written to. One may also pass in a
sequentialfile object (opened in ‘rb’ mode for reading or ‘w+b’ for writing), though for typical use cases it
is practically identical to passing in a list or template.

Classes

Mark5BFileReader(fh_raw[, kday, ref_time, . . . ]) Simple reader for Mark 5B files.
Mark5BFileWriter(fh_raw) Simple writer for Mark 5B files.
Mark5BStreamBase(fh_raw, header0[, . . . ]) Base for Mark 5B streams.
Mark5BStreamReader(fh_raw[, sample_rate, . . . ]) VLBI Mark 5B format reader.
Mark5BStreamWriter(fh_raw[, header0, . . . ]) VLBI Mark 5B format writer.

6.3. Reference/API 153

http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None


baseband Documentation, Release 3.1.0

Mark5BFileReader

class baseband.mark5b.base.Mark5BFileReader(fh_raw, kday=None, ref_time=None, nchan=None,
bps=2)

Bases: baseband.vlbi_base.base.VLBIFileReaderBase

Simple reader for Mark 5B files.

Wraps a binary filehandle, providing methods to help interpret the data, such as read_frame and
get_frame_rate.

Parameters

fh_raw
[filehandle] Filehandle of the raw binary data file.

kday
[int or None] Explicit thousands of MJD of the observation time. Can instead pass an
approximate ref_time.

ref_time
[Time or None] Reference time within 500 days of the observation time, used to infer the
full MJD. Used only if kday is not given.

nchan
[int, optional] Number of channels. Default: 1.

bps
[int, optional] Bits per elementary sample. Default: 2.

Attributes Summary

info()

Methods Summary

close(self)
find_header(self, \*args, \*\*kwargs) Find the nearest header from the current position.
get_frame_rate(self) Determine the number of frames per second.
locate_frames(self[, pattern]) Use a pattern to locate frame starts near the current

position.
read_frame(self[, verify]) Read a single frame (header plus payload).
read_header(self) Read a single header from the file.
temporary_offset(self) Context manager for temporarily seeking to another

file position.

154 Chapter 6. MARK 5B

http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time


baseband Documentation, Release 3.1.0

Attributes Documentation

info

Methods Documentation

close(self)

find_header(self, *args, **kwargs)
Find the nearest header from the current position.

If successful, the file pointer is left at the start of the header.

Parameters are as for locate_frames.

Returns

header
Retrieved header.

Raises

~baseband.vlbi_base.base.HeaderNotFoundError
If no header could be located.

AssertionError
If the header did not pass verification.

get_frame_rate(self)
Determine the number of frames per second.

This method first tries to determine the frame rate by looking for the highest frame number in the first
second of data. If that fails, it uses the time difference between two consecutive frames. This can fail if the
headers do not store fractional seconds, or if the data rate is above 512 Mbps.

Returns

frame_rate
[Quantity] Frames per second.

locate_frames(self, pattern=None, **kwargs)
Use a pattern to locate frame starts near the current position.

Note that the current position is always included.

Parameters are as for baseband.vlbi_base.base.VLBIFileReaderBase.locate_frames except that by
default the Mark 5B sync pattern is used.

read_frame(self, verify=True)
Read a single frame (header plus payload).

Returns

frame
[Mark5BFrame] With header and data properties that return the Mark5BHeader and data
encoded in the frame, respectively.

6.3. Reference/API 155

http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity


baseband Documentation, Release 3.1.0

verify
[bool, optional] Whether to do basic checks of frame integrity. Default: True.

read_header(self)
Read a single header from the file.

Returns

header
[Mark5BHeader]

temporary_offset(self)
Context manager for temporarily seeking to another file position.

To be used as part of a with statement:

with fh_raw.temporary_offset() [as fh_raw]:
with-block

On exiting the with-block, the file pointer is moved back to its original position.

Mark5BFileWriter

class baseband.mark5b.base.Mark5BFileWriter(fh_raw)
Bases: baseband.vlbi_base.base.VLBIFileBase

Simple writer for Mark 5B files.

Adds write_frame method to the VLBI binary file wrapper.

Methods Summary

close(self)
temporary_offset(self) Context manager for temporarily seeking to another

file position.
write_frame(self, data[, header, bps, valid]) Write a single frame (header plus payload).

Methods Documentation

close(self)

temporary_offset(self)
Context manager for temporarily seeking to another file position.

To be used as part of a with statement:

with fh_raw.temporary_offset() [as fh_raw]:
with-block

On exiting the with-block, the file pointer is moved back to its original position.

write_frame(self, data, header=None, bps=2, valid=True, **kwargs)
Write a single frame (header plus payload).

156 Chapter 6. MARK 5B

https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Parameters

data
[ndarray or :Mark5BFrame] If an array, header should be given, which will be used to get
the information needed to encode the array, and to construct the Mark 5B frame.

header
[Mark5BHeader] Can instead give keyword arguments to construct a header. Ignored if
data is a Mark5BFrame instance.

bps
[int, optional] Bits per elementary sample, to use when encoding the payload. Ignored if
data is a Mark5BFrame instance. Default: 2.

valid
[bool, optional] Whether the data are valid; if False, a payload filled with an appropriate
pattern will be crated. Ignored if data is a Mark5BFrame instance. Default: True.

**kwargs
If header is not given, these are used to initialize one.

Mark5BStreamBase

class baseband.mark5b.base.Mark5BStreamBase(fh_raw, header0, sample_rate=None, nchan=1, bps=2,
squeeze=True, subset=(), fill_value=0.0, verify=True)

Bases: baseband.vlbi_base.base.VLBIStreamBase

Base for Mark 5B streams.

Attributes Summary

bps Bits per elementary sample.
complex_data Whether the data are complex.
header0 First header of the file.
sample_rate Number of complete samples per second.
sample_shape Shape of a complete sample (possibly subset or

squeezed).
samples_per_frame Number of complete samples per frame.
squeeze Whether data arrays have dimensions with length

unity removed.
start_time Start time of the file.
subset Specific components of the complete sample to de-

code.
time Time of the sample pointer’s current offset in file.
verify Whether to do consistency checks on frames being

read.

6.3. Reference/API 157

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Methods Summary

close(self)
tell(self[, unit]) Current offset in the file.

Attributes Documentation

bps
Bits per elementary sample.

complex_data
Whether the data are complex.

header0
First header of the file.

sample_rate
Number of complete samples per second.

sample_shape
Shape of a complete sample (possibly subset or squeezed).

samples_per_frame
Number of complete samples per frame.

squeeze
Whether data arrays have dimensions with length unity removed.

If True, data read out has such dimensions removed, and data passed in for writing has them inserted.

start_time
Start time of the file.

See also time for the time of the sample pointer’s current offset.

subset
Specific components of the complete sample to decode.

The order of dimensions is the same as for sample_shape. Set by the class initializer.

time
Time of the sample pointer’s current offset in file.

See also start_time for the start time of the file.

verify
Whether to do consistency checks on frames being read.

Methods Documentation

close(self)

tell(self, unit=None)
Current offset in the file.

Parameters

158 Chapter 6. MARK 5B

https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

unit
[Unit or str, optional] Time unit the offset should be returned in. By default, no unit is
used, i.e., an integer enumerating samples is returned. For the special string ‘time’, the
absolute time is calculated.

Returns

offset
[int, Quantity, or Time] Offset in current file (or time at current position).

Mark5BStreamReader

class baseband.mark5b.base.Mark5BStreamReader(fh_raw, sample_rate=None, kday=None,
ref_time=None, nchan=None, bps=2, squeeze=True,
subset=(), fill_value=0.0, verify='fix')

Bases: baseband.mark5b.base.Mark5BStreamBase, baseband.vlbi_base.base.VLBIStreamReaderBase

VLBI Mark 5B format reader.

Allows access a Mark 5B file as a continues series of samples.

Parameters

fh_raw
[filehandle] Filehandle of the raw Mark 5B stream.

sample_rate
[Quantity, optional] Number of complete samples per second, i.e. the rate at which each
channel is sampled. If None (default), will be inferred from scanning one second of the file
or, failing that, using the time difference between two consecutive frames.

kday
[int or None] Explicit thousands of MJD of the observation start time (eg. 57000 for MJD
57999), used to infer the full MJD from the header’s time information. Can instead pass an
approximate ref_time.

ref_time
[Time or None] Reference time within 500 days of the observation start time, used to infer
the full MJD. Only used if kday is not given.

nchan
[int] Number of channels. Needs to be explicitly passed in.

bps
[int, optional] Bits per elementary sample. Default: 2.

squeeze
[bool, optional] If True (default), remove any dimensions of length unity from decoded data.

subset
[indexing object, optional] Specific channels of the complete sample to decode (after possi-
ble squeezing). If an empty tuple (default), all channels are read.

fill_value
[float or complex] Value to use for invalid or missing data. Default: 0.

verify
[bool or ‘fix’, optional] Whether to do basic checks of frame integrity when reading. De-
fault: ‘fix’, which implies basic verification and replacement of gaps with zeros.

6.3. Reference/API 159

http://docs.astropy.org/en/stable/api/astropy.units.Unit.html#astropy.units.Unit
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
https://docs.python.org/3/library/constants.html#None
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Attributes Summary

bps Bits per elementary sample.
complex_data Whether the data are complex.
dtype
fill_value Value to use for invalid or missing data.
header0 First header of the file.
info() Standardized information on stream readers.
ndim Number of dimensions of the (squeezed/subset)

stream data.
sample_rate Number of complete samples per second.
sample_shape Shape of a complete sample (possibly subset or

squeezed).
samples_per_frame Number of complete samples per frame.
shape Shape of the (squeezed/subset) stream data.
size Total number of component samples in the

(squeezed/subset) stream data.
squeeze Whether data arrays have dimensions with length

unity removed.
start_time Start time of the file.
stop_time Time at the end of the file, just after the last sample.
subset Specific components of the complete sample to de-

code.
time Time of the sample pointer’s current offset in file.
verify Whether to do consistency checks on frames being

read.

Methods Summary

close(self)
read(self[, count, out]) Read a number of complete (or subset) samples.
readable(self) Whether the file can be read and decoded.
seek(self, offset[, whence]) Change the stream position.
tell(self[, unit]) Current offset in the file.

Attributes Documentation

bps
Bits per elementary sample.

complex_data
Whether the data are complex.

dtype

fill_value
Value to use for invalid or missing data. Default: 0.

header0
First header of the file.

160 Chapter 6. MARK 5B



baseband Documentation, Release 3.1.0

info
Standardized information on stream readers.

The info descriptor provides a few standard attributes, most of which can also be accessed directly on the
stream filehandle, and tests basic readability of the stream. More detailed information on the underlying
file is stored in its info, accessible via info.file_info (and shown by __repr__).

Attributes

start_time
[Time] Time of the first complete sample.

stop_time
[Time] Time of the complete sample just beyond the end of the file.

sample_rate
[Quantity] Complete samples per unit of time.

shape
[tuple] Equivalent shape of the whole file, i.e., combining the number of complete samples
and the shape of those samples.

bps
[int] Number of bits used to encode each elementary sample.

complex_data
[bool] Whether the data are complex.

verify
[bool or str] The type of verification done by the stream reader.

readable
[bool] Whether the first and last samples could be read and decoded.

checks
[dict] Checks that were done to determine whether the file was readable (normally ‘con-
tinuous’ and ‘decodable’).

errors
[dict] Any exceptions raised while trying to determine attributes or doing checks. Keyed
by the attributes/checks.

warnings
[dict] Any warnings about the attributes or about the checks. Keyed by the at-
tributes/checks.

ndim
Number of dimensions of the (squeezed/subset) stream data.

sample_rate
Number of complete samples per second.

sample_shape
Shape of a complete sample (possibly subset or squeezed).

samples_per_frame
Number of complete samples per frame.

shape
Shape of the (squeezed/subset) stream data.

6.3. Reference/API 161

http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity


baseband Documentation, Release 3.1.0

size
Total number of component samples in the (squeezed/subset) stream data.

squeeze
Whether data arrays have dimensions with length unity removed.

If True, data read out has such dimensions removed, and data passed in for writing has them inserted.

start_time
Start time of the file.

See also time for the time of the sample pointer’s current offset, and (if available) stop_time for the time
at the end of the file.

stop_time
Time at the end of the file, just after the last sample.

See also start_time for the start time of the file, and time for the time of the sample pointer’s current
offset.

subset
Specific components of the complete sample to decode.

The order of dimensions is the same as for sample_shape. Set by the class initializer.

time
Time of the sample pointer’s current offset in file.

See also start_time for the start time, and (if available) stop_time for the end time, of the file.

verify
Whether to do consistency checks on frames being read.

Methods Documentation

close(self)

read(self, count=None, out=None)
Read a number of complete (or subset) samples.

The range retrieved can span multiple frames.

Parameters

count
[int or None, optional] Number of complete/subset samples to read. If None (default) or
negative, the whole file is read. Ignored if out is given.

out
[None or array, optional] Array to store the data in. If given, count will be inferred from
the first dimension; the other dimension should equal sample_shape.

Returns

out
[ndarray of float or complex] The first dimension is sample-time, and the remainder given
by sample_shape.

readable(self)
Whether the file can be read and decoded.

162 Chapter 6. MARK 5B

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


baseband Documentation, Release 3.1.0

seek(self, offset, whence=0)
Change the stream position.

This works like a normal filehandle seek, but the offset is in samples (or a relative or absolute time).

Parameters

offset
[int, Quantity, or Time] Offset to move to. Can be an (integer) number of samples, an
offset in time units, or an absolute time.

whence
[{0, 1, 2, ‘start’, ‘current’, or ‘end’}, optional] Like regular seek, the offset is taken to be
from the start if whence=0 (default), from the current position if 1, and from the end if 2.
One can alternativey use ‘start’, ‘current’, or ‘end’ for 0, 1, or 2, respectively. Ignored if
offset is a time.

tell(self, unit=None)
Current offset in the file.

Parameters

unit
[Unit or str, optional] Time unit the offset should be returned in. By default, no unit is
used, i.e., an integer enumerating samples is returned. For the special string ‘time’, the
absolute time is calculated.

Returns

offset
[int, Quantity, or Time] Offset in current file (or time at current position).

Mark5BStreamWriter

class baseband.mark5b.base.Mark5BStreamWriter(fh_raw, header0=None, sample_rate=None,
nchan=1, bps=2, squeeze=True, **kwargs)

Bases: baseband.mark5b.base.Mark5BStreamBase, baseband.vlbi_base.base.VLBIStreamWriterBase

VLBI Mark 5B format writer.

Encodes and writes sequences of samples to file.

Parameters

fh_raw
[filehandle] For writing filled sets of frames to storage.

header0
[Mark5BHeader] Header for the first frame, holding time information, etc. Can instead give
keyword arguments to construct a header (see **kwargs).

sample_rate
[Quantity] Number of complete samples per second, i.e. the rate at which each channel is
sampled. Needed to calculate header timestamps.

nchan
[int, optional] Number of channels. Default: 1.

6.3. Reference/API 163

http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.units.Unit.html#astropy.units.Unit
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity


baseband Documentation, Release 3.1.0

bps
[int, optional] Bits per elementary sample. Default: 2.

squeeze
[bool, optional] If True (default), write accepts squeezed arrays as input, and adds any
dimensions of length unity.

**kwargs
If no header is given, an attempt is made to construct one from these. For a standard header,
the following suffices.

— Header kwargs
[(see fromvalues())]

time
[Time] Start time of the file. Sets bcd-encoded unit day, hour, minute, second, and fraction,
as well as the frame number, in the header.

Attributes Summary

bps Bits per elementary sample.
complex_data Whether the data are complex.
header0 First header of the file.
sample_rate Number of complete samples per second.
sample_shape Shape of a complete sample (possibly subset or

squeezed).
samples_per_frame Number of complete samples per frame.
squeeze Whether data arrays have dimensions with length

unity removed.
start_time Start time of the file.
subset Specific components of the complete sample to de-

code.
time Time of the sample pointer’s current offset in file.
verify Whether to do consistency checks on frames being

read.

Methods Summary

close(self)
tell(self[, unit]) Current offset in the file.
write(self, data[, valid]) Write data, buffering by frames as needed.

164 Chapter 6. MARK 5B

https://docs.python.org/3/library/constants.html#True
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time


baseband Documentation, Release 3.1.0

Attributes Documentation

bps
Bits per elementary sample.

complex_data
Whether the data are complex.

header0
First header of the file.

sample_rate
Number of complete samples per second.

sample_shape
Shape of a complete sample (possibly subset or squeezed).

samples_per_frame
Number of complete samples per frame.

squeeze
Whether data arrays have dimensions with length unity removed.

If True, data read out has such dimensions removed, and data passed in for writing has them inserted.

start_time
Start time of the file.

See also time for the time of the sample pointer’s current offset.

subset
Specific components of the complete sample to decode.

The order of dimensions is the same as for sample_shape. Set by the class initializer.

time
Time of the sample pointer’s current offset in file.

See also start_time for the start time of the file.

verify
Whether to do consistency checks on frames being read.

Methods Documentation

close(self)

tell(self, unit=None)
Current offset in the file.

Parameters

unit
[Unit or str, optional] Time unit the offset should be returned in. By default, no unit is
used, i.e., an integer enumerating samples is returned. For the special string ‘time’, the
absolute time is calculated.

Returns

6.3. Reference/API 165

https://docs.python.org/3/library/constants.html#True
http://docs.astropy.org/en/stable/api/astropy.units.Unit.html#astropy.units.Unit


baseband Documentation, Release 3.1.0

offset
[int, Quantity, or Time] Offset in current file (or time at current position).

write(self, data, valid=True)
Write data, buffering by frames as needed.

Parameters

data
[ndarray] Piece of data to be written, with sample dimensions as given by sample_shape.
This should be properly scaled to make best use of the dynamic range delivered by the
encoding.

valid
[bool, optional] Whether the current data are valid. Default: True.

Class Inheritance Diagram

Mark5BFileReaderVLBIFileReaderBase

Mark5BFileWriter

VLBIFileBase

Mark5BStreamBase

Mark5BStreamReader

Mark5BStreamWriter

VLBIStreamBase

VLBIStreamReaderBase

VLBIStreamWriterBase

166 Chapter 6. MARK 5B

http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#True


CHAPTER

SEVEN

MARK 4

The Mark 4 format is the output format of the MIT Haystack Observatory’s Mark 4 VLBI magnetic tape-based data
acquisition system, and one output format of its successor, the Mark 5A hard drive-based system. The format’s
specification is in the Mark IIIA/IV/VLBA design specifications.

Baseband currently only supports files that have been parity-stripped and corrected for barrel roll and data modulation.

7.1 File Structure

Mark 4 files contain up to 64 concurrent data “tracks”. Tracks are divided into 22500-bit “tape frames”, each of which
consists of a 160-bit header followed by a 19840-bit payload. The header includes a timestamp (accurate to 1.25 ms),
track ID, sideband, and fan-out/in factor (see below); the details of these can be found in 2.1.1 - 2.1.3 in the design
specifications. The payload consists of a 1-bit stream. When recording 2-bit elementary samples, the data is split into
two tracks, with one carrying the sign bit, and the other the magnitude bit.

The header takes the place of the first 160 bits of payload data, so that the first sample occurs fanout * 160 sample
times after the header time. This means that a Mark 4 stream is not contiguous in time. The length of one frame ranges
from 1.25 ms to 160 ms in octave steps (which ensures an integer number of frames falls within 1 minute), setting the
maximum sample rate per track to 18 megabits/track/s.

Data from a single channel may be distributed to multiple tracks - “fan-out” - or multiple channels fed to one track -
“fan-in”. Fan-out is used when sampling at rates higher than 18 megabits/track/s. Baseband currently only supports
tracks using fan-out (“longitudinal data format”).

Baseband reconstructs the tracks into channels (reconstituting 2-bit data from two tracks into a single channel if
necessary) and combines tape frame headers into a single data frame header.

7.2 Usage

This section covers reading and writing Mark 4 files with Baseband; general usage can be found under the Using
Baseband section. For situations in which one is unsure of a file’s format, Baseband features the general baseband.
open and baseband.file_info functions, which are also discussed in Using Baseband. The examples below use the
small sample file baseband/data/sample.m4, and the numpy, astropy.units, astropy.time.Time, and baseband.
mark4 modules:

>>> import numpy as np
>>> import astropy.units as u
>>> from astropy.time import Time
>>> from baseband import mark4
>>> from baseband.data import SAMPLE_MARK4

167

https://www.haystack.mit.edu/tech/vlbi/mark5/docs/230.3.pdf
https://www.haystack.mit.edu/tech/vlbi/mark5/docs/230.3.pdf
https://www.haystack.mit.edu/tech/vlbi/mark5/docs/230.3.pdf
https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
http://docs.astropy.org/en/stable/units/index.html#module-astropy.units
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time


baseband Documentation, Release 3.1.0

Opening a Mark 4 file with open in binary mode provides a normal file reader but extended with methods to read a
Mark4Frame. Mark 4 files generally do not start (or end) at a frame boundary, so in binary mode one has to find
the first header using find_header (which will also determine the number of Mark 4 tracks, if not given explicitly).
Since Mark 4 files do not store the full time information, one must pass either the the decade the data was taken, or an
equivalent reference Time object:

>>> fb = mark4.open(SAMPLE_MARK4, 'rb', decade=2010)
>>> fb.find_header() # Locate first header and determine ntrack.
<Mark4Header bcd_headstack1: [0x3344]*64,

bcd_headstack2: [0x1122]*64,
headstack_id: [0, ..., 1],
bcd_track_id: [0x2, ..., 0x33],
fan_out: [0, ..., 3],
magnitude_bit: [False, ..., True],
lsb_output: [True]*64,
converter_id: [0, ..., 7],
time_sync_error: [False]*64,
internal_clock_error: [False]*64,
processor_time_out_error: [False]*64,
communication_error: [False]*64,
_1_11_1: [False]*64,
_1_10_1: [False]*64,
track_roll_enabled: [False]*64,
sequence_suspended: [False]*64,
system_id: [108]*64,
_1_0_1_sync: [False]*64,
sync_pattern: [0xffffffff]*64,
bcd_unit_year: [0x4]*64,
bcd_day: [0x167]*64,
bcd_hour: [0x7]*64,
bcd_minute: [0x38]*64,
bcd_second: [0x12]*64,
bcd_fraction: [0x475]*64,
crc: [0xea6, ..., 0x212]>

>>> fb.ntrack
64
>>> fb.tell()
2696
>>> frame = fb.read_frame()
>>> frame.shape
(80000, 8)
>>> frame.header.time
<Time object: scale='utc' format='yday' value=2014:167:07:38:12.47500>
>>> fb.close()

Opening in stream mode automatically finds the first frame, and wraps the low-level routines such that reading and
writing is in units of samples. It also provides access to header information. Here we pass a reference Time object
within 4 years of the observation start time to ref_time, rather than a decade:

>>> fh = mark4.open(SAMPLE_MARK4, 'rs', ref_time=Time('2013:100:23:00:00'))
>>> fh
<Mark4StreamReader name=... offset=0

sample_rate=32.0 MHz, samples_per_frame=80000,
sample_shape=SampleShape(nchan=8), bps=2,
start_time=2014-06-16T07:38:12.47500>

>>> d = fh.read(6400)
>>> d.shape

(continues on next page)

168 Chapter 7. MARK 4

http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time


baseband Documentation, Release 3.1.0

(continued from previous page)

(6400, 8)
>>> d[635:645, 0].astype(int) # first channel
array([ 0, 0, 0, 0, 0, -1, 1, 3, 1, -1])
>>> fh.close()

As mentioned in the File Structure section, because the header takes the place of the first 160 samples of each track,
the first payload sample occurs fanout * 160 sample times after the header time. The stream reader includes these
overwritten samples as invalid data (zeros, by default):

>>> np.array_equal(d[:640], np.zeros((640,) + d.shape[1:]))
True

When writing to file, we need to pass in the sample rate in addition to decade. The number of tracks can be inferred
from the header:

>>> fw = mark4.open('sample_mark4_segment.m4', 'ws', header0=frame.header,
... sample_rate=32*u.MHz, decade=2010)
>>> fw.write(frame.data)
>>> fw.close()
>>> fh = mark4.open('sample_mark4_segment.m4', 'rs',
... sample_rate=32.*u.MHz, decade=2010)
>>> np.all(fh.read(80000) == frame.data)
True
>>> fh.close()

Note that above we had to pass in the sample rate even when opening the file for reading; this is because there is only
a single frame in the file, and hence the sample rate cannot be inferred automatically.

7.3 Reference/API

7.3.1 baseband.mark4 Package

Mark 4 VLBI data reader.

Code inspired by Walter Brisken’s mark5access. See https://github.com/demorest/mark5access.

The format itself is described in detail in https://www.haystack.mit.edu/tech/vlbi/mark5/docs/230.3.pdf

Functions

open(name[, mode]) Open Mark4 file(s) for reading or writing.

7.3. Reference/API 169

https://github.com/demorest/mark5access
https://www.haystack.mit.edu/tech/vlbi/mark5/docs/230.3.pdf


baseband Documentation, Release 3.1.0

open

baseband.mark4.open(name, mode='rs', **kwargs)
Open Mark4 file(s) for reading or writing.

Opened as a binary file, one gets a wrapped filehandle that adds methods to read/write a frame. Opened as a
stream, the handle is wrapped further, with methods such as reading and writing to the file as if it were a stream
of samples.

Parameters

name
[str or filehandle, or sequence of str] File name, filehandle, or sequence of file names (see
Notes).

mode
[{‘rb’, ‘wb’, ‘rs’, or ‘ws’}, optional] Whether to open for reading or writing, and as a regular
binary file or as a stream. Default: ‘rs’, for reading a stream.

**kwargs
Additional arguments when opening the file as a stream.

— For reading a stream
[(see Mark4StreamReader)]

sample_rate
[Quantity, optional] Number of complete samples per second, i.e. the rate at which each
channel is sampled. If not given, will be inferred from scanning two frames of the file.

ntrack
[int, optional] Number of Mark 4 bitstreams. If None (default), will attempt to automatically
detect it by scanning the file.

decade
[int or None] Decade of the observation start time (eg. 2010 for 2018), needed to remove
ambiguity in the Mark 4 time stamp (default: None). Can instead pass an approximate
ref_time.

ref_time
[Time or None] Reference time within 4 years of the start time of the observations. Used
only if decade is not given.

squeeze
[bool, optional] If True (default), remove any dimensions of length unity from decoded data.

subset
[indexing object, optional] Specific channels of the complete sample to decode (after possi-
ble squeezing). If an empty tuple (default), all channels are read.

fill_value
[float or complex, optional] Value to use for invalid or missing data. Default: 0.

verify
[bool or ‘fix’, optional] Whether to do basic checks of frame integrity when reading. De-
fault: ‘fix’, which implies basic verification and replacement of gaps with zeros.

— For writing a stream
[(see Mark4StreamWriter)]

170 Chapter 7. MARK 4

http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

header0
[Mark4Header] Header for the first frame, holding time information, etc. Can instead give
keyword arguments to construct a header (see **kwargs).

sample_rate
[Quantity] Number of complete samples per second, i.e. the rate at which each channel is
sampled. Needed to calculate header timestamps.

squeeze
[bool, optional] If True (default), writer accepts squeezed arrays as input, and adds any
dimensions of length unity.

file_size
[int or None, optional] When writing to a sequence of files, the maximum size of one file in
bytes. If None (default), the file size is unlimited, and only the first file will be written to.

**kwargs
If the header is not given, an attempt will be made to construct one with any further keyword
arguments. See Mark4StreamWriter.

Returns

Filehandle
Mark4FileReader or Mark4FileWriter (binary), or Mark4StreamReader or
Mark4StreamWriter (stream)

Notes

Although it is not generally expected to be useful for Mark 4, like for other formats one can also pass to name
a list, tuple, or subclass of FileNameSequencer. For writing to multiple files, the file_size keyword must be
passed or only the first file will be written to. One may also pass in a sequentialfile object (opened in ‘rb’
mode for reading or ‘w+b’ for writing), though for typical use cases it is practically identical to passing in a list
or template.

Classes

Mark4Frame(header, payload[, valid, verify]) Representation of a Mark 4 frame, consisting of a
header and payload.

Mark4Header(words[, ntrack, decade, . . . ]) Decoder/encoder of a Mark 4 Header, containing all
streams.

Mark4Payload(words[, header, nchan, bps, fanout]) Container for decoding and encoding Mark 4 payloads.

Mark4Frame

class baseband.mark4.Mark4Frame(header, payload, valid=None, verify=True)
Bases: baseband.vlbi_base.frame.VLBIFrameBase

Representation of a Mark 4 frame, consisting of a header and payload.

Parameters

header
[Mark4Header] Wrapper around the encoded header words, providing access to the header

7.3. Reference/API 171

http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None


baseband Documentation, Release 3.1.0

information.

payload
[Mark4Payload] Wrapper around the payload, provding mechanisms to decode it.

valid
[bool or None, optional] Whether the data are valid. If None (default), inferred from header.
Note that header is updated in-place if True or False.

verify
[bool, optional] Whether or not to do basic assertions that check the integrity (e.g., that
channel information and number of tracks are consistent between header and data). Default:
True.

Notes

The Frame can also be read instantiated using class methods:

fromfile : read header and payload from a filehandle

fromdata : encode data as payload

Of course, one can also do the opposite:

tofile : method to write header and payload to filehandle

data : property that yields full decoded payload

One can decode part of the payload by indexing or slicing the frame. If the frame does not contain valid data,
all values returned are set to self.fill_value.

A number of properties are defined: shape, dtype and size are the shape, type and number of complete samples
of the data array, and nbytes the frame size in bytes. Furthermore, the frame acts as a dictionary, with keys
those of the header. Any attribute that is not defined on the frame itself, such as .time will be looked up on the
header as well.

Attributes Summary

data Full decoded frame, with header part filled in.
dtype Numeric type of the frame data.
fill_value Value to replace invalid data in the frame.
nbytes Size of the encoded frame in bytes.
ndim Number of dimensions of the frame data.
sample_shape Shape of a sample in the frame (nchan,).
shape Shape of the frame data.
size Total number of component samples in the frame

data.
valid Whether frame contains valid data.

172 Chapter 7. MARK 4

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Methods Summary

fromdata(data[, header, verify]) Construct frame from data and header.
fromfile(fh, ntrack[, decade, ref_time, verify]) Read a frame from a filehandle.
keys(self)
tofile(self, fh) Write encoded frame to filehandle.
verify(self) Simple verification.

Attributes Documentation

data
Full decoded frame, with header part filled in.

dtype
Numeric type of the frame data.

fill_value
Value to replace invalid data in the frame.

nbytes
Size of the encoded frame in bytes.

ndim
Number of dimensions of the frame data.

sample_shape
Shape of a sample in the frame (nchan,).

shape
Shape of the frame data.

size
Total number of component samples in the frame data.

valid
Whether frame contains valid data.

None of the error flags are set.

Methods Documentation

classmethod fromdata(data, header=None, verify=True, **kwargs)
Construct frame from data and header.

Parameters

data
[ndarray] Array holding complex or real data to be encoded. This should have the full
size of a data frame, even though the part covered by the header will be ignored.

header
[Mark4Header or None] If not given, will attempt to generate one using the keywords.

verify
[bool, optional] Whether to do basic checks of frame integrity (default: True).

7.3. Reference/API 173

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

classmethod fromfile(fh, ntrack, decade=None, ref_time=None, verify=True)
Read a frame from a filehandle.

Parameters

fh
[filehandle] To read header from.

ntrack
[int] Number of Mark 4 bitstreams.

decade
[int or None] Decade in which the observations were taken. Can instead pass an approxi-
mate ref_time.

ref_time
[Time or None] Reference time within 4 years of the observation time. Used only if decade
is not given.

verify
[bool, optional] Whether to do basic verification of integrity. Default: True.

keys(self)

tofile(self, fh)
Write encoded frame to filehandle.

verify(self)
Simple verification. To be added to by subclasses.

Mark4Header

class baseband.mark4.Mark4Header(words, ntrack=None, decade=None, ref_time=None, verify=True)
Bases: baseband.mark4.header.Mark4TrackHeader

Decoder/encoder of a Mark 4 Header, containing all streams.

See https://www.haystack.mit.edu/tech/vlbi/mark5/docs/230.3.pdf

Parameters

words
[ndarray of int, or None] Shape should be (5, number-of-tracks), and dtype np.uint32. If
None, ntrack should be given and words will be initialized to 0.

ntrack
[None or int] Number of Mark 4 bitstreams, to help initialize words if needed.

decade
[int or None] Decade in which the observations were taken (needed to remove ambiguity in
the Mark 4 time stamp). Can instead pass an approximate ref_time.

ref_time
[Time or None] Reference time within 4 years of the observation time, used to infer the full
Mark 4 timestamp. Used only if decade is not given.

verify
[bool, optional] Whether to do basic verification of integrity. Default: True.

174 Chapter 7. MARK 4

http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://docs.python.org/3/library/constants.html#True
https://www.haystack.mit.edu/tech/vlbi/mark5/docs/230.3.pdf
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Returns

header
[Mark4Header]

Attributes Summary

bps Bits per elementary sample (either 1 or 2).
converters Converted ID and sideband used for each channel.
decade
fanout Number of samples stored in one payload item of

size ntrack.
fraction Fractional seconds (decoded from ‘bcd_fraction’).
frame_nbytes Size of the frame in bytes.
mutable Whether the header can be modified.
nbytes Size of the header in bytes.
nchan Number of channels (ntrack * fanout) in the

frame.
nsb Number of side bands used.
ntrack Number of Mark 4 bitstreams.
payload_nbytes Size of the payload in bytes.
samples_per_frame Number of complete samples in the frame.
stream_dtype Stream dtype required to hold this header’s number

of tracks.
time Convert BCD time code to Time object for all tracks.
track_assignment Assignments of tracks to channels and fanout items.
track_id Track identifier (decoded from ‘bcd_track_id’).

Methods Summary

copy(self, \*\*kwargs) Create a mutable and independent copy of the header.
fromfile(fh, ntrack[, decade, ref_time, verify]) Read Mark 4 header from file.
fromkeys(\*args, \*\*kwargs) Initialise a header from parsed values.
fromvalues(ntrack[, decade, ref_time]) Initialise a header from parsed values.
get_time(self) Convert BCD time code to Time object for all tracks.
infer_decade(self, ref_time) Uses a reference time to set a header’s decade.
invariant_pattern([invariants, ntrack]) Invariant pattern to help search for headers.
invariants() Set of keys of invariant header parts.
keys(self) All keys defined for this header.
set_time(self, time) Convert Time object to BCD timestamp elements.
tofile(self, fh) Write VLBI frame header to filehandle.
update(self[, crc, verify]) Update the header by setting keywords or properties.
verify(self) Verify header integrity.

7.3. Reference/API 175



baseband Documentation, Release 3.1.0

Attributes Documentation

bps
Bits per elementary sample (either 1 or 2).

If set, combined with fanout and ntrack to update ‘magnitude_bit’ for all tracks.

converters
Converted ID and sideband used for each channel.

Returns a structured array with numerical ‘converter’ and boolean ‘lsb’ entries (where True means lower
sideband).

Can be set with a similar structured array or a dict; if just an an array is passed in, it will be assumed that
the sideband has been set beforehand (e.g., by setting nsb) and that the array holds the converter IDs.

decade = None

fanout
Number of samples stored in one payload item of size ntrack.

If set, will update ‘fan_out’ for each track.

fraction
Fractional seconds (decoded from ‘bcd_fraction’).

frame_nbytes
Size of the frame in bytes.

mutable
Whether the header can be modified.

nbytes
Size of the header in bytes.

nchan
Number of channels (ntrack * fanout) in the frame.

If set, it is combined with ntrack and fanout to infer bps.

nsb
Number of side bands used.

If set, assumes all converters are upper sideband for 1, and that converter IDs alternate between upper and
lower sideband for 2.

ntrack
Number of Mark 4 bitstreams.

payload_nbytes
Size of the payload in bytes.

Note that the payloads miss pieces overwritten by the header.

samples_per_frame
Number of complete samples in the frame.

If set, this uses the number of tracks to infer and set fanout.

stream_dtype
Stream dtype required to hold this header’s number of tracks.

176 Chapter 7. MARK 4

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#dict


baseband Documentation, Release 3.1.0

time
Convert BCD time code to Time object for all tracks.

If all tracks have the same fractional seconds, only a single Time instance is returned.

Uses bcd-encoded ‘unit_year’, ‘day’, ‘hour’, ‘minute’, ‘second’ and ‘frac_sec’, plus decade from the
initialisation to calculate the time. See https://www.haystack.mit.edu/tech/vlbi/mark5/docs/230.3.pdf

track_assignment
Assignments of tracks to channels and fanout items.

The assignments are inferred from tables 10-14 in https://www.haystack.mit.edu/tech/vlbi/mark5/docs/
230.3.pdf except that 2 has been subtracted so that tracks start at 0, and that for 64 tracks the arrays are
suitably enlarged by adding another set of channels.

The returned array has shape (fanout, nchan, bps).

track_id
Track identifier (decoded from ‘bcd_track_id’).

Methods Documentation

copy(self, **kwargs)
Create a mutable and independent copy of the header.

Keyword arguments can be passed on as needed by possible subclasses.

classmethod fromfile(fh, ntrack, decade=None, ref_time=None, verify=True)
Read Mark 4 header from file.

Parameters

fh
[filehandle] To read header from.

ntrack
[int] Number of Mark 4 bitstreams.

decade
[int or None] Decade in which the observations were taken. Can instead pass an approxi-
mate ref_time.

ref_time
[Time or None] Reference time within 4 years of the observation time. Used only if decade
is not given.

verify
[bool, optional] Whether to do basic verification of integrity. Default: True.

classmethod fromkeys(*args, **kwargs)
Initialise a header from parsed values.

Like fromvalues, but without any interpretation of keywords.

Raises

KeyError
[if not all keys required are present in kwargs]

7.3. Reference/API 177

https://www.haystack.mit.edu/tech/vlbi/mark5/docs/230.3.pdf
https://www.haystack.mit.edu/tech/vlbi/mark5/docs/230.3.pdf
https://www.haystack.mit.edu/tech/vlbi/mark5/docs/230.3.pdf
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

classmethod fromvalues(ntrack, decade=None, ref_time=None, **kwargs)
Initialise a header from parsed values.

Here, the parsed values must be given as keyword arguments, i.e., for any header = cls(<words>),
cls.fromvalues(**header) == header.

However, unlike for the fromkeys class method, data can also be set using arguments named after header
methods, such as time.

Parameters

ntrack
[int] Number of Mark 4 bitstreams.

decade
[int or None, optional] Decade in which the observations were taken. Can instead pass an
approximate ref_time. Not needed if time is given.

ref_time
[Time or None, optional] Reference time within 4 years of the observation time. Used only
if decade is not given, and not needed if time is given.

**kwargs :
Values used to initialize header keys or methods.

— Header keywords
[(minimum for a complete header)]

time
[Time instance] Time of the first sample.

bps
[int] Bits per elementary sample.

fanout
[int] Number of tracks over which a given channel is spread out.

get_time(self)
Convert BCD time code to Time object for all tracks.

If all tracks have the same fractional seconds, only a single Time instance is returned.

Uses bcd-encoded ‘unit_year’, ‘day’, ‘hour’, ‘minute’, ‘second’ and ‘frac_sec’, plus decade from the
initialisation to calculate the time. See https://www.haystack.mit.edu/tech/vlbi/mark5/docs/230.3.pdf

infer_decade(self, ref_time)
Uses a reference time to set a header’s decade.

Parameters

ref_time
[Time] Reference time within 5 years of the observation time.

classmethod invariant_pattern(invariants=None, ntrack=None)
Invariant pattern to help search for headers.

On the class, like mark5access, we use use one bit more than the sync pattern in word 2, viz., lsb of word
1, which we assume is always 0 (it is the lowest bit of eight of ‘system_id’).

Parameters

178 Chapter 7. MARK 4

http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://www.haystack.mit.edu/tech/vlbi/mark5/docs/230.3.pdf
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time


baseband Documentation, Release 3.1.0

invariants
[set of str, optional] Set of keys to header parts that are shared between all headers of a
given type or within a given stream/file. Default: from invariants().

ntrack
[int, optional] Number of tracks. Required for getting class invariants, ignored for in-
stances.

classmethod invariants()
Set of keys of invariant header parts.

On the class, this returns keys of parts that are shared by all headers for the type, on an instance, those that
are shared with other headers in the same file.

If neither are defined, returns ‘sync_pattern’ if the header containts that key.

keys(self)
All keys defined for this header.

set_time(self, time)
Convert Time object to BCD timestamp elements.

Parameters

time
[Time] The time to use for this header.

tofile(self, fh)
Write VLBI frame header to filehandle.

update(self, crc=None, verify=True, **kwargs)
Update the header by setting keywords or properties.

Here, any keywords matching header keys are applied first, and any remaining ones are used to set header
properties, in the order set by the class (in _properties).

Parameters

crc
[int or None, optional] If None (default), recalculate the CRC after updating.

verify
[bool, optional] If True (default), verify integrity after updating.

**kwargs
Arguments used to set keywords and properties.

verify(self)
Verify header integrity.

7.3. Reference/API 179

http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Mark4Payload

class baseband.mark4.Mark4Payload(words, header=None, nchan=1, bps=2, fanout=1)
Bases: baseband.vlbi_base.payload.VLBIPayloadBase

Container for decoding and encoding Mark 4 payloads.

Parameters

words
[ndarray] Array containg LSB unsigned words (with the right size) that encode the payload.

header
[Mark4Header, optional] If given, used to infer the number of channels, bps, and fanout.

nchan
[int, optional] Number of channels, used if header is not given. Default: 1.

bps
[int, optional] Number of bits per sample, used if header is not given. Default: 2.

fanout
[int, optional] Number of tracks every bit stream is spread over, used if header is not given.
Default: 1.

Notes

The total number of tracks is nchan * bps * fanout.

Attributes Summary

data Full decoded payload.
dtype Numeric type of the decoded data array.
nbytes Size of the payload in bytes.
ndim Number of dimensions of the decoded data array.
shape Shape of the decoded data array.
size Total number of component samples in the decoded

data array.

Methods Summary

fromdata(data, header) Encode data as payload, using header information.
fromfile(fh, header) Read payload from filehandle and decode it into data.
tofile(self, fh) Write payload to filehandle.

180 Chapter 7. MARK 4

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


baseband Documentation, Release 3.1.0

Attributes Documentation

data
Full decoded payload.

dtype
Numeric type of the decoded data array.

nbytes
Size of the payload in bytes.

ndim
Number of dimensions of the decoded data array.

shape
Shape of the decoded data array.

size
Total number of component samples in the decoded data array.

Methods Documentation

classmethod fromdata(data, header)
Encode data as payload, using header information.

classmethod fromfile(fh, header)
Read payload from filehandle and decode it into data.

The payload_nbytes, number of channels, bits per sample, and fanout ratio are all taken from the header.

tofile(self, fh)
Write payload to filehandle.

Class Inheritance Diagram

Mark4FrameVLBIFrameBase

Mark4HeaderMark4TrackHeader

Mark4PayloadVLBIPayloadBase

VLBIHeaderBase

7.3. Reference/API 181



baseband Documentation, Release 3.1.0

7.3.2 baseband.mark4.header Module

Definitions for VLBI Mark 4 Headers.

Implements a Mark4Header class used to store header words, and decode/encode the information therein.

For the specification of tape Mark 4 format, see https://www.haystack.mit.edu/tech/vlbi/mark5/docs/230.3.pdf

A little bit on the disk representation is at https://ui.adsabs.harvard.edu/abs/2003ASPC..306..123W

Functions

stream2words(stream[, track]) Convert a stream of integers to uint32 header words.
words2stream(words) Convert a set of uint32 header words to a stream of in-

tegers.

stream2words

baseband.mark4.header.stream2words(stream, track=None)
Convert a stream of integers to uint32 header words.

Parameters

stream
[array of int] For each int, every bit corresponds to a particular track.

track
[int, array, or None, optional] The track to extract. If None (default), extract all tracks that
the type of int in the stream can hold.

words2stream

baseband.mark4.header.words2stream(words)
Convert a set of uint32 header words to a stream of integers.

Parameters

words
[array of uint32]

Returns

stream
[array of int] For each int, every bit corresponds to a particular track.

182 Chapter 7. MARK 4

https://www.haystack.mit.edu/tech/vlbi/mark5/docs/230.3.pdf
https://ui.adsabs.harvard.edu/abs/2003ASPC..306..123W
https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html#numpy.array
https://docs.python.org/3/library/constants.html#None
https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html#numpy.array
https://docs.scipy.org/doc/numpy/reference/generated/numpy.array.html#numpy.array


baseband Documentation, Release 3.1.0

Classes

Mark4TrackHeader(words[, decade, ref_time, . . . ]) Decoder/encoder of a Mark 4 Track Header.
Mark4Header(words[, ntrack, decade, . . . ]) Decoder/encoder of a Mark 4 Header, containing all

streams.

Mark4TrackHeader

class baseband.mark4.header.Mark4TrackHeader(words, decade=None, ref_time=None, verify=True)
Bases: baseband.vlbi_base.header.VLBIHeaderBase

Decoder/encoder of a Mark 4 Track Header.

See https://www.haystack.mit.edu/tech/vlbi/mark5/docs/230.3.pdf

Parameters

words
[tuple of int, or None] Five 32-bit unsigned int header words. If None, set to a list of zeros
for later initialisation.

decade
[int or None] Decade in which the observations were taken (needed to remove ambiguity in
the Mark 4 time stamp). Can instead pass an approximate ref_time.

ref_time
[Time or None] Reference time within 4 years of the observation time, used to infer the full
Mark 4 timestamp. Used only if decade is not given.

verify
[bool, optional] Whether to do basic verification of integrity. Default: True.

Returns

header
[Mark4TrackHeader]

Attributes Summary

decade Decade of year, to complement ‘bcd_unit_year’ from
header.

fraction Fractional seconds (decoded from ‘bcd_fraction’).
mutable Whether the header can be modified.
nbytes Size of the header in bytes.
time Convert BCD time code to Time object.
track_id Track identifier (decoded from ‘bcd_track_id’).

7.3. Reference/API 183

https://www.haystack.mit.edu/tech/vlbi/mark5/docs/230.3.pdf
https://docs.python.org/3/library/constants.html#None
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Methods Summary

copy(self, \*\*kwargs) Create a mutable and independent copy of the header.
fromfile(fh, \*args, \*\*kwargs) Read VLBI Header from file.
fromkeys(\*args, \*\*kwargs) Initialise a header from parsed values.
fromvalues(\*args, \*\*kwargs) Initialise a header from parsed values.
get_time(self) Convert BCD time code to Time object.
infer_decade(self, ref_time) Uses a reference time to set a header’s decade.
invariant_pattern([invariants]) Pattern and mask shared between headers of a type

or stream.
invariants() Set of keys of invariant header parts.
keys(self) All keys defined for this header.
set_time(self, time) Convert Time object to BCD timestamp elements.
tofile(self, fh) Write VLBI frame header to filehandle.
update(self, \*[, verify]) Update the header by setting keywords or properties.
verify(self) Verify header integrity.

Attributes Documentation

decade = None
Decade of year, to complement ‘bcd_unit_year’ from header.

fraction
Fractional seconds (decoded from ‘bcd_fraction’).

mutable
Whether the header can be modified.

nbytes
Size of the header in bytes.

time
Convert BCD time code to Time object.

Calculate time using bcd-encoded ‘bcd_unit_year’, ‘bcd_day’, ‘bcd_hour’, ‘bcd_minute’, ‘bcd_second’
header items, as well as the fraction property (inferred from ‘bcd_fraction’) and decade from the initial-
isation. See See https://www.haystack.mit.edu/tech/vlbi/mark5/docs/230.3.pdf

track_id
Track identifier (decoded from ‘bcd_track_id’).

Methods Documentation

copy(self, **kwargs)
Create a mutable and independent copy of the header.

Keyword arguments can be passed on as needed by possible subclasses.

classmethod fromfile(fh, *args, **kwargs)
Read VLBI Header from file.

Arguments are the same as for class initialisation. The header constructed will be immutable.

classmethod fromkeys(*args, **kwargs)
Initialise a header from parsed values.

184 Chapter 7. MARK 4

https://www.haystack.mit.edu/tech/vlbi/mark5/docs/230.3.pdf


baseband Documentation, Release 3.1.0

Like fromvalues, but without any interpretation of keywords.

Raises

KeyError
[if not all keys required are present in kwargs]

classmethod fromvalues(*args, **kwargs)
Initialise a header from parsed values.

Here, the parsed values must be given as keyword arguments, i.e., for any header = cls(<words>),
cls.fromvalues(**header) == header.

However, unlike for the fromkeys class method, data can also be set using arguments named after header
methods, such as time.

Parameters

*args
Possible arguments required to initialize an empty header.

**kwargs
Values used to initialize header keys or methods.

get_time(self)
Convert BCD time code to Time object.

Calculate time using bcd-encoded ‘bcd_unit_year’, ‘bcd_day’, ‘bcd_hour’, ‘bcd_minute’, ‘bcd_second’
header items, as well as the fraction property (inferred from ‘bcd_fraction’) and decade from the initial-
isation. See See https://www.haystack.mit.edu/tech/vlbi/mark5/docs/230.3.pdf

infer_decade(self, ref_time)
Uses a reference time to set a header’s decade.

Parameters

ref_time
[Time] Reference time within 5 years of the observation time.

classmethod invariant_pattern(invariants=None, **kwargs)
Pattern and mask shared between headers of a type or stream.

This is mostly for use inside locate_frames().

Parameters

invariants
[set of str, optional] Set of keys to header parts that are shared between all headers of a
given type or within a given stream/file. Default: from invariants().

**kwargs
Keyword arguments needed to instantiate an empty header. (Mostly for Mark 4).

Returns

pattern
[list of int] The pattern that is shared between headers. If called on an instance, just the
header words; if called on a class, words with defaults for the relevant parts set.

7.3. Reference/API 185

https://www.haystack.mit.edu/tech/vlbi/mark5/docs/230.3.pdf
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time


baseband Documentation, Release 3.1.0

mask
[list of int] For each entry in pattern a bit mask with bits set for the parts that are invariant.

classmethod invariants()
Set of keys of invariant header parts.

On the class, this returns keys of parts that are shared by all headers for the type, on an instance, those that
are shared with other headers in the same file.

If neither are defined, returns ‘sync_pattern’ if the header containts that key.

keys(self)
All keys defined for this header.

set_time(self, time)
Convert Time object to BCD timestamp elements.

Parameters

time
[Time] The time to use for this header.

tofile(self, fh)
Write VLBI frame header to filehandle.

update(self, *, verify=True, **kwargs)
Update the header by setting keywords or properties.

Here, any keywords matching header keys are applied first, and any remaining ones are used to set header
properties, in the order set by the class (in _properties).

Parameters

verify
[bool, optional] If True (default), verify integrity after updating.

**kwargs
Arguments used to set keywords and properties.

verify(self)
Verify header integrity.

Mark4Header

class baseband.mark4.header.Mark4Header(words, ntrack=None, decade=None, ref_time=None, ver-
ify=True)

Bases: baseband.mark4.header.Mark4TrackHeader

Decoder/encoder of a Mark 4 Header, containing all streams.

See https://www.haystack.mit.edu/tech/vlbi/mark5/docs/230.3.pdf

Parameters

words
[ndarray of int, or None] Shape should be (5, number-of-tracks), and dtype np.uint32. If
None, ntrack should be given and words will be initialized to 0.

ntrack
[None or int] Number of Mark 4 bitstreams, to help initialize words if needed.

186 Chapter 7. MARK 4

http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://docs.python.org/3/library/constants.html#True
https://www.haystack.mit.edu/tech/vlbi/mark5/docs/230.3.pdf
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None


baseband Documentation, Release 3.1.0

decade
[int or None] Decade in which the observations were taken (needed to remove ambiguity in
the Mark 4 time stamp). Can instead pass an approximate ref_time.

ref_time
[Time or None] Reference time within 4 years of the observation time, used to infer the full
Mark 4 timestamp. Used only if decade is not given.

verify
[bool, optional] Whether to do basic verification of integrity. Default: True.

Returns

header
[Mark4Header]

Attributes Summary

bps Bits per elementary sample (either 1 or 2).
converters Converted ID and sideband used for each channel.
decade
fanout Number of samples stored in one payload item of

size ntrack.
fraction Fractional seconds (decoded from ‘bcd_fraction’).
frame_nbytes Size of the frame in bytes.
mutable Whether the header can be modified.
nbytes Size of the header in bytes.
nchan Number of channels (ntrack * fanout) in the

frame.
nsb Number of side bands used.
ntrack Number of Mark 4 bitstreams.
payload_nbytes Size of the payload in bytes.
samples_per_frame Number of complete samples in the frame.
stream_dtype Stream dtype required to hold this header’s number

of tracks.
time Convert BCD time code to Time object for all tracks.
track_assignment Assignments of tracks to channels and fanout items.
track_id Track identifier (decoded from ‘bcd_track_id’).

Methods Summary

copy(self, \*\*kwargs) Create a mutable and independent copy of the header.
fromfile(fh, ntrack[, decade, ref_time, verify]) Read Mark 4 header from file.
fromkeys(\*args, \*\*kwargs) Initialise a header from parsed values.
fromvalues(ntrack[, decade, ref_time]) Initialise a header from parsed values.
get_time(self) Convert BCD time code to Time object for all tracks.
infer_decade(self, ref_time) Uses a reference time to set a header’s decade.
invariant_pattern([invariants, ntrack]) Invariant pattern to help search for headers.
invariants() Set of keys of invariant header parts.
keys(self) All keys defined for this header.

Continued on next page

7.3. Reference/API 187

http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Table 14 – continued from previous page
set_time(self, time) Convert Time object to BCD timestamp elements.
tofile(self, fh) Write VLBI frame header to filehandle.
update(self[, crc, verify]) Update the header by setting keywords or properties.
verify(self) Verify header integrity.

Attributes Documentation

bps
Bits per elementary sample (either 1 or 2).

If set, combined with fanout and ntrack to update ‘magnitude_bit’ for all tracks.

converters
Converted ID and sideband used for each channel.

Returns a structured array with numerical ‘converter’ and boolean ‘lsb’ entries (where True means lower
sideband).

Can be set with a similar structured array or a dict; if just an an array is passed in, it will be assumed that
the sideband has been set beforehand (e.g., by setting nsb) and that the array holds the converter IDs.

decade = None

fanout
Number of samples stored in one payload item of size ntrack.

If set, will update ‘fan_out’ for each track.

fraction
Fractional seconds (decoded from ‘bcd_fraction’).

frame_nbytes
Size of the frame in bytes.

mutable
Whether the header can be modified.

nbytes
Size of the header in bytes.

nchan
Number of channels (ntrack * fanout) in the frame.

If set, it is combined with ntrack and fanout to infer bps.

nsb
Number of side bands used.

If set, assumes all converters are upper sideband for 1, and that converter IDs alternate between upper and
lower sideband for 2.

ntrack
Number of Mark 4 bitstreams.

payload_nbytes
Size of the payload in bytes.

Note that the payloads miss pieces overwritten by the header.

188 Chapter 7. MARK 4

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#dict


baseband Documentation, Release 3.1.0

samples_per_frame
Number of complete samples in the frame.

If set, this uses the number of tracks to infer and set fanout.

stream_dtype
Stream dtype required to hold this header’s number of tracks.

time
Convert BCD time code to Time object for all tracks.

If all tracks have the same fractional seconds, only a single Time instance is returned.

Uses bcd-encoded ‘unit_year’, ‘day’, ‘hour’, ‘minute’, ‘second’ and ‘frac_sec’, plus decade from the
initialisation to calculate the time. See https://www.haystack.mit.edu/tech/vlbi/mark5/docs/230.3.pdf

track_assignment
Assignments of tracks to channels and fanout items.

The assignments are inferred from tables 10-14 in https://www.haystack.mit.edu/tech/vlbi/mark5/docs/
230.3.pdf except that 2 has been subtracted so that tracks start at 0, and that for 64 tracks the arrays are
suitably enlarged by adding another set of channels.

The returned array has shape (fanout, nchan, bps).

track_id
Track identifier (decoded from ‘bcd_track_id’).

Methods Documentation

copy(self, **kwargs)
Create a mutable and independent copy of the header.

Keyword arguments can be passed on as needed by possible subclasses.

classmethod fromfile(fh, ntrack, decade=None, ref_time=None, verify=True)
Read Mark 4 header from file.

Parameters

fh
[filehandle] To read header from.

ntrack
[int] Number of Mark 4 bitstreams.

decade
[int or None] Decade in which the observations were taken. Can instead pass an approxi-
mate ref_time.

ref_time
[Time or None] Reference time within 4 years of the observation time. Used only if decade
is not given.

verify
[bool, optional] Whether to do basic verification of integrity. Default: True.

classmethod fromkeys(*args, **kwargs)
Initialise a header from parsed values.

Like fromvalues, but without any interpretation of keywords.

7.3. Reference/API 189

https://www.haystack.mit.edu/tech/vlbi/mark5/docs/230.3.pdf
https://www.haystack.mit.edu/tech/vlbi/mark5/docs/230.3.pdf
https://www.haystack.mit.edu/tech/vlbi/mark5/docs/230.3.pdf
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Raises

KeyError
[if not all keys required are present in kwargs]

classmethod fromvalues(ntrack, decade=None, ref_time=None, **kwargs)
Initialise a header from parsed values.

Here, the parsed values must be given as keyword arguments, i.e., for any header = cls(<words>),
cls.fromvalues(**header) == header.

However, unlike for the fromkeys class method, data can also be set using arguments named after header
methods, such as time.

Parameters

ntrack
[int] Number of Mark 4 bitstreams.

decade
[int or None, optional] Decade in which the observations were taken. Can instead pass an
approximate ref_time. Not needed if time is given.

ref_time
[Time or None, optional] Reference time within 4 years of the observation time. Used only
if decade is not given, and not needed if time is given.

**kwargs :
Values used to initialize header keys or methods.

— Header keywords
[(minimum for a complete header)]

time
[Time instance] Time of the first sample.

bps
[int] Bits per elementary sample.

fanout
[int] Number of tracks over which a given channel is spread out.

get_time(self)
Convert BCD time code to Time object for all tracks.

If all tracks have the same fractional seconds, only a single Time instance is returned.

Uses bcd-encoded ‘unit_year’, ‘day’, ‘hour’, ‘minute’, ‘second’ and ‘frac_sec’, plus decade from the
initialisation to calculate the time. See https://www.haystack.mit.edu/tech/vlbi/mark5/docs/230.3.pdf

infer_decade(self, ref_time)
Uses a reference time to set a header’s decade.

Parameters

ref_time
[Time] Reference time within 5 years of the observation time.

classmethod invariant_pattern(invariants=None, ntrack=None)
Invariant pattern to help search for headers.

190 Chapter 7. MARK 4

http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://www.haystack.mit.edu/tech/vlbi/mark5/docs/230.3.pdf
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time


baseband Documentation, Release 3.1.0

On the class, like mark5access, we use use one bit more than the sync pattern in word 2, viz., lsb of word
1, which we assume is always 0 (it is the lowest bit of eight of ‘system_id’).

Parameters

invariants
[set of str, optional] Set of keys to header parts that are shared between all headers of a
given type or within a given stream/file. Default: from invariants().

ntrack
[int, optional] Number of tracks. Required for getting class invariants, ignored for in-
stances.

classmethod invariants()
Set of keys of invariant header parts.

On the class, this returns keys of parts that are shared by all headers for the type, on an instance, those that
are shared with other headers in the same file.

If neither are defined, returns ‘sync_pattern’ if the header containts that key.

keys(self)
All keys defined for this header.

set_time(self, time)
Convert Time object to BCD timestamp elements.

Parameters

time
[Time] The time to use for this header.

tofile(self, fh)
Write VLBI frame header to filehandle.

update(self, crc=None, verify=True, **kwargs)
Update the header by setting keywords or properties.

Here, any keywords matching header keys are applied first, and any remaining ones are used to set header
properties, in the order set by the class (in _properties).

Parameters

crc
[int or None, optional] If None (default), recalculate the CRC after updating.

verify
[bool, optional] If True (default), verify integrity after updating.

**kwargs
Arguments used to set keywords and properties.

verify(self)
Verify header integrity.

7.3. Reference/API 191

http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Variables

CRC12 CRC polynomial used for Mark 4 Headers.
crc12(stream) Cyclic Redundancy Check for a bitstream.

CRC12

baseband.mark4.header.CRC12 = 6159
CRC polynomial used for Mark 4 Headers.

x^12 + x^11 + x^3 + x^2 + x + 1, i.e., 0x180f. See page 4 of https://www.haystack.mit.edu/tech/vlbi/mark5/
docs/230.3.pdf

This is also a ‘standard’ CRC-12 mentioned in https://en.wikipedia.org/wiki/Cyclic_redundancy_check

crc12

baseband.mark4.header.crc12(stream) = <baseband.vlbi_base.utils.CRCStack object>
Cyclic Redundancy Check for a bitstream.

See https://en.wikipedia.org/wiki/Cyclic_redundancy_check

Once initialised, the instance can be used as a function that calculates the CRC, or one can use the check method
to verify that the CRC at the end of a stream is correct.

This class is specifically for arrays in which multiple bit streams occupy different bit levels, and the dimension
is treated as the index into the bits. A single stream would thus be of type bool. Unsigned integers represent
multiple streams. E.g., for a 64-track Mark 4 header, the stream would be an array of np.uint64 words.

Parameters

polynomial
[int] Binary encoded CRC divisor. For instance, that used by Mark 4 headers is 0x180f, or
x^12 + x^11 + x^3 + x^2 + x + 1.

See also:

baseband.vlbi_base.utils.CRC
for calculating CRC for a single value or an array of values.

Class Inheritance Diagram

Mark4HeaderMark4TrackHeaderVLBIHeaderBase

192 Chapter 7. MARK 4

https://www.haystack.mit.edu/tech/vlbi/mark5/docs/230.3.pdf
https://www.haystack.mit.edu/tech/vlbi/mark5/docs/230.3.pdf
https://en.wikipedia.org/wiki/Cyclic_redundancy_check
https://en.wikipedia.org/wiki/Cyclic_redundancy_check
https://docs.python.org/3/library/functions.html#bool


baseband Documentation, Release 3.1.0

7.3.3 baseband.mark4.payload Module

Definitions for VLBI Mark 4 payloads.

Implements a Mark4Payload class used to store payload words, and decode to or encode from a data array.

For the specification, see https://www.haystack.mit.edu/tech/vlbi/mark5/docs/230.3.pdf

Functions

reorder32(x) Reorder 32-track bits to bring signs & magnitudes to-
gether.

reorder64(x) Reorder 64-track bits to bring signs & magnitudes to-
gether.

init_luts() Set up the look-up tables for levels as a function of input
byte.

decode_8chan_2bit_fanout4(frame) Decode payload for 8 channels using 2 bits, fan-out 4
(64 tracks).

encode_8chan_2bit_fanout4(values) Encode payload for 8 channels using 2 bits, fan-out 4
(64 tracks).

reorder32

baseband.mark4.payload.reorder32(x)
Reorder 32-track bits to bring signs & magnitudes together.

reorder64

baseband.mark4.payload.reorder64(x)
Reorder 64-track bits to bring signs & magnitudes together.

init_luts

baseband.mark4.payload.init_luts()
Set up the look-up tables for levels as a function of input byte.

decode_8chan_2bit_fanout4

baseband.mark4.payload.decode_8chan_2bit_fanout4(frame)
Decode payload for 8 channels using 2 bits, fan-out 4 (64 tracks).

7.3. Reference/API 193

https://www.haystack.mit.edu/tech/vlbi/mark5/docs/230.3.pdf


baseband Documentation, Release 3.1.0

encode_8chan_2bit_fanout4

baseband.mark4.payload.encode_8chan_2bit_fanout4(values)
Encode payload for 8 channels using 2 bits, fan-out 4 (64 tracks).

Classes

Mark4Payload(words[, header, nchan, bps, fanout]) Container for decoding and encoding Mark 4 payloads.

Mark4Payload

class baseband.mark4.payload.Mark4Payload(words, header=None, nchan=1, bps=2, fanout=1)
Bases: baseband.vlbi_base.payload.VLBIPayloadBase

Container for decoding and encoding Mark 4 payloads.

Parameters

words
[ndarray] Array containg LSB unsigned words (with the right size) that encode the payload.

header
[Mark4Header, optional] If given, used to infer the number of channels, bps, and fanout.

nchan
[int, optional] Number of channels, used if header is not given. Default: 1.

bps
[int, optional] Number of bits per sample, used if header is not given. Default: 2.

fanout
[int, optional] Number of tracks every bit stream is spread over, used if header is not given.
Default: 1.

Notes

The total number of tracks is nchan * bps * fanout.

Attributes Summary

data Full decoded payload.
dtype Numeric type of the decoded data array.
nbytes Size of the payload in bytes.
ndim Number of dimensions of the decoded data array.
shape Shape of the decoded data array.
size Total number of component samples in the decoded

data array.

194 Chapter 7. MARK 4

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


baseband Documentation, Release 3.1.0

Methods Summary

fromdata(data, header) Encode data as payload, using header information.
fromfile(fh, header) Read payload from filehandle and decode it into data.
tofile(self, fh) Write payload to filehandle.

Attributes Documentation

data
Full decoded payload.

dtype
Numeric type of the decoded data array.

nbytes
Size of the payload in bytes.

ndim
Number of dimensions of the decoded data array.

shape
Shape of the decoded data array.

size
Total number of component samples in the decoded data array.

Methods Documentation

classmethod fromdata(data, header)
Encode data as payload, using header information.

classmethod fromfile(fh, header)
Read payload from filehandle and decode it into data.

The payload_nbytes, number of channels, bits per sample, and fanout ratio are all taken from the header.

tofile(self, fh)
Write payload to filehandle.

Class Inheritance Diagram

Mark4PayloadVLBIPayloadBase

7.3. Reference/API 195



baseband Documentation, Release 3.1.0

7.3.4 baseband.mark4.frame Module

Definitions for VLBI Mark 4 payloads.

Implements a Mark4Payload class used to store payload words, and decode to or encode from a data array.

For the specification, see https://www.haystack.mit.edu/tech/vlbi/mark5/docs/230.3.pdf

Classes

Mark4Frame(header, payload[, valid, verify]) Representation of a Mark 4 frame, consisting of a
header and payload.

Mark4Frame

class baseband.mark4.frame.Mark4Frame(header, payload, valid=None, verify=True)
Bases: baseband.vlbi_base.frame.VLBIFrameBase

Representation of a Mark 4 frame, consisting of a header and payload.

Parameters

header
[Mark4Header] Wrapper around the encoded header words, providing access to the header
information.

payload
[Mark4Payload] Wrapper around the payload, provding mechanisms to decode it.

valid
[bool or None, optional] Whether the data are valid. If None (default), inferred from header.
Note that header is updated in-place if True or False.

verify
[bool, optional] Whether or not to do basic assertions that check the integrity (e.g., that
channel information and number of tracks are consistent between header and data). Default:
True.

Notes

The Frame can also be read instantiated using class methods:

fromfile : read header and payload from a filehandle

fromdata : encode data as payload

Of course, one can also do the opposite:

tofile : method to write header and payload to filehandle

data : property that yields full decoded payload

One can decode part of the payload by indexing or slicing the frame. If the frame does not contain valid data,
all values returned are set to self.fill_value.

A number of properties are defined: shape, dtype and size are the shape, type and number of complete samples
of the data array, and nbytes the frame size in bytes. Furthermore, the frame acts as a dictionary, with keys

196 Chapter 7. MARK 4

https://www.haystack.mit.edu/tech/vlbi/mark5/docs/230.3.pdf
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

those of the header. Any attribute that is not defined on the frame itself, such as .time will be looked up on the
header as well.

Attributes Summary

data Full decoded frame, with header part filled in.
dtype Numeric type of the frame data.
fill_value Value to replace invalid data in the frame.
nbytes Size of the encoded frame in bytes.
ndim Number of dimensions of the frame data.
sample_shape Shape of a sample in the frame (nchan,).
shape Shape of the frame data.
size Total number of component samples in the frame

data.
valid Whether frame contains valid data.

Methods Summary

fromdata(data[, header, verify]) Construct frame from data and header.
fromfile(fh, ntrack[, decade, ref_time, verify]) Read a frame from a filehandle.
keys(self)
tofile(self, fh) Write encoded frame to filehandle.
verify(self) Simple verification.

Attributes Documentation

data
Full decoded frame, with header part filled in.

dtype
Numeric type of the frame data.

fill_value
Value to replace invalid data in the frame.

nbytes
Size of the encoded frame in bytes.

ndim
Number of dimensions of the frame data.

sample_shape
Shape of a sample in the frame (nchan,).

shape
Shape of the frame data.

size
Total number of component samples in the frame data.

valid
Whether frame contains valid data.

None of the error flags are set.

7.3. Reference/API 197



baseband Documentation, Release 3.1.0

Methods Documentation

classmethod fromdata(data, header=None, verify=True, **kwargs)
Construct frame from data and header.

Parameters

data
[ndarray] Array holding complex or real data to be encoded. This should have the full
size of a data frame, even though the part covered by the header will be ignored.

header
[Mark4Header or None] If not given, will attempt to generate one using the keywords.

verify
[bool, optional] Whether to do basic checks of frame integrity (default: True).

classmethod fromfile(fh, ntrack, decade=None, ref_time=None, verify=True)
Read a frame from a filehandle.

Parameters

fh
[filehandle] To read header from.

ntrack
[int] Number of Mark 4 bitstreams.

decade
[int or None] Decade in which the observations were taken. Can instead pass an approxi-
mate ref_time.

ref_time
[Time or None] Reference time within 4 years of the observation time. Used only if decade
is not given.

verify
[bool, optional] Whether to do basic verification of integrity. Default: True.

keys(self)

tofile(self, fh)
Write encoded frame to filehandle.

verify(self)
Simple verification. To be added to by subclasses.

Class Inheritance Diagram

Mark4FrameVLBIFrameBase

198 Chapter 7. MARK 4

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#True
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

7.3.5 baseband.mark4.file_info Module

The Mark4FileReaderInfo property.

Includes information about what is needed to calcuate times, number of tracks and offset of first header.

Classes

Mark4FileReaderInfo([parent]) Standardized information on Mark 4 file readers.

Mark4FileReaderInfo

class baseband.mark4.file_info.Mark4FileReaderInfo(parent=None)
Bases: baseband.vlbi_base.file_info.VLBIFileReaderInfo

Standardized information on Mark 4 file readers.

The info descriptor has a number of standard attributes, which are determined from arguments passed in open-
ing the file, from the first header (info.header0) and from possibly scanning the file to determine the duration
of frames. This class has two additional attributes specific to Mark 4 files (ntrack and offset0, see below).

Examples

The most common use is simply to print information:

>>> from baseband.data import SAMPLE_MARK4
>>> from baseband import mark4
>>> fh = mark4.open(SAMPLE_MARK4, 'rb')
>>> fh.info
File information:
format = mark4
number_of_frames = 2
frame_rate = 400.0 Hz
sample_rate = 32.0 MHz
samples_per_frame = 80000
sample_shape = (8,)
bps = 2
complex_data = False
readable = True
ntrack = 64
offset0 = 2696

missing: decade, ref_time: needed to infer full times.

checks: decodable: True
>>> fh.close()

>>> fh = mark4.open(SAMPLE_MARK4, 'rb', decade=2010)
>>> fh.info
File information:
format = mark4
number_of_frames = 2
frame_rate = 400.0 Hz
sample_rate = 32.0 MHz

(continues on next page)

7.3. Reference/API 199



baseband Documentation, Release 3.1.0

(continued from previous page)

samples_per_frame = 80000
sample_shape = (8,)
bps = 2
complex_data = False
start_time = 2014-06-16T07:38:12.475000000
readable = True
ntrack = 64
offset0 = 2696

checks: decodable: True
>>> fh.close()

Attributes

format
[str or None] File format, or None if the underlying file cannot be parsed.

frame_rate
[Quantity] Number of data frames per unit of time.

sample_rate
[Quantity] Complete samples per unit of time.

samples_per_frame
[int] Number of complete samples in each frame.

sample_shape
[tuple] Dimensions of each complete sample (e.g., (nchan,)).

bps
[int] Number of bits used to encode each elementary sample.

complex_data
[bool] Whether the data are complex.

start_time
[Time] Time of the first complete sample.

ntrack
[int] Number of “tape tracks” simulated in the disk file.

offset0
[int] Offset in bytes from the start of the file to the location of the first header.

readable
[bool] Whether the first sample could be read and decoded.

missing
[dict] Entries are keyed by names of arguments that should be passed to the file reader to
obtain full information. The associated entries explain why these arguments are needed. For
Mark 4, the possible entries are decade and ref_time.

errors
[dict] Any exceptions raised while trying to determine attributes. Keyed by the attributes.

200 Chapter 7. MARK 4

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time


baseband Documentation, Release 3.1.0

Attributes Summary

attr_names Attributes that the container provides.
bps Link to header0.bps
checks Link to checks
complex_data
decade Link to parent.decade
decodable Whether decoding the first frame worked.
errors Link to errors
format The file format.
frame0
frame_rate Number of frames per unit time.
header0
missing Link to missing
ntrack Link to parent.ntrack
number_of_frames Total number of frames.
offset0 Offset in bytes to the location of the first header.
readable Whether the file is readable and decodable.
ref_time Link to parent.ref_time
sample_rate Rate of complete samples per unit time.
sample_shape Dimensions of each complete sample.
samples_per_frame Link to header0.samples_per_frame
start_time Time of the first sample.
time_info Additional time info needed to get the start time.
warnings Link to warnings

Methods Summary

__call__(self) Create a dict with file information.

Attributes Documentation

attr_names = ('format', 'number_of_frames', 'frame_rate', 'sample_rate', 'samples_per_frame', 'sample_shape', 'bps', 'complex_data', 'start_time', 'readable', 'ntrack', 'offset0', 'missing', 'checks', 'errors', 'warnings')
Attributes that the container provides.

bps
Link to header0.bps

checks
Link to checks

complex_data = False

decade
Link to parent.decade

decodable
Whether decoding the first frame worked.

errors
Link to errors

7.3. Reference/API 201



baseband Documentation, Release 3.1.0

format
The file format.

frame0

frame_rate
Number of frames per unit time.

header0

missing
Link to missing

ntrack
Link to parent.ntrack

number_of_frames
Total number of frames.

offset0
Offset in bytes to the location of the first header.

readable
Whether the file is readable and decodable.

ref_time
Link to parent.ref_time

sample_rate
Rate of complete samples per unit time.

sample_shape
Dimensions of each complete sample.

samples_per_frame
Link to header0.samples_per_frame

start_time
Time of the first sample.

time_info
Additional time info needed to get the start time.

warnings
Link to warnings

Methods Documentation

__call__(self)
Create a dict with file information.

This includes information about checks done, possible missing information, as well as possible warnings
and errors.

202 Chapter 7. MARK 4



baseband Documentation, Release 3.1.0

Class Inheritance Diagram

Mark4FileReaderInfoVLBIFileReaderInfoVLBIInfoBase

7.3.6 baseband.mark4.base Module

Functions

open(name[, mode]) Open Mark4 file(s) for reading or writing.

open

baseband.mark4.base.open(name, mode='rs', **kwargs)
Open Mark4 file(s) for reading or writing.

Opened as a binary file, one gets a wrapped filehandle that adds methods to read/write a frame. Opened as a
stream, the handle is wrapped further, with methods such as reading and writing to the file as if it were a stream
of samples.

Parameters

name
[str or filehandle, or sequence of str] File name, filehandle, or sequence of file names (see
Notes).

mode
[{‘rb’, ‘wb’, ‘rs’, or ‘ws’}, optional] Whether to open for reading or writing, and as a regular
binary file or as a stream. Default: ‘rs’, for reading a stream.

**kwargs
Additional arguments when opening the file as a stream.

— For reading a stream
[(see Mark4StreamReader)]

sample_rate
[Quantity, optional] Number of complete samples per second, i.e. the rate at which each
channel is sampled. If not given, will be inferred from scanning two frames of the file.

ntrack
[int, optional] Number of Mark 4 bitstreams. If None (default), will attempt to automatically
detect it by scanning the file.

decade
[int or None] Decade of the observation start time (eg. 2010 for 2018), needed to remove
ambiguity in the Mark 4 time stamp (default: None). Can instead pass an approximate
ref_time.

7.3. Reference/API 203

http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None


baseband Documentation, Release 3.1.0

ref_time
[Time or None] Reference time within 4 years of the start time of the observations. Used
only if decade is not given.

squeeze
[bool, optional] If True (default), remove any dimensions of length unity from decoded data.

subset
[indexing object, optional] Specific channels of the complete sample to decode (after possi-
ble squeezing). If an empty tuple (default), all channels are read.

fill_value
[float or complex, optional] Value to use for invalid or missing data. Default: 0.

verify
[bool or ‘fix’, optional] Whether to do basic checks of frame integrity when reading. De-
fault: ‘fix’, which implies basic verification and replacement of gaps with zeros.

— For writing a stream
[(see Mark4StreamWriter)]

header0
[Mark4Header] Header for the first frame, holding time information, etc. Can instead give
keyword arguments to construct a header (see **kwargs).

sample_rate
[Quantity] Number of complete samples per second, i.e. the rate at which each channel is
sampled. Needed to calculate header timestamps.

squeeze
[bool, optional] If True (default), writer accepts squeezed arrays as input, and adds any
dimensions of length unity.

file_size
[int or None, optional] When writing to a sequence of files, the maximum size of one file in
bytes. If None (default), the file size is unlimited, and only the first file will be written to.

**kwargs
If the header is not given, an attempt will be made to construct one with any further keyword
arguments. See Mark4StreamWriter.

Returns

Filehandle
Mark4FileReader or Mark4FileWriter (binary), or Mark4StreamReader or
Mark4StreamWriter (stream)

Notes

Although it is not generally expected to be useful for Mark 4, like for other formats one can also pass to name
a list, tuple, or subclass of FileNameSequencer. For writing to multiple files, the file_size keyword must be
passed or only the first file will be written to. One may also pass in a sequentialfile object (opened in ‘rb’
mode for reading or ‘w+b’ for writing), though for typical use cases it is practically identical to passing in a list
or template.

204 Chapter 7. MARK 4

http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://docs.python.org/3/library/constants.html#True
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None


baseband Documentation, Release 3.1.0

Classes

Mark4FileReader(fh_raw[, ntrack, decade, . . . ]) Simple reader for Mark 4 files.
Mark4FileWriter(fh_raw) Simple writer for Mark 4 files.
Mark4StreamBase(fh_raw, header0[, . . . ]) Base for Mark 4 streams.
Mark4StreamReader(fh_raw[, sample_rate, . . . ]) VLBI Mark 4 format reader.
Mark4StreamWriter(fh_raw[, header0, . . . ]) VLBI Mark 4 format writer.

Mark4FileReader

class baseband.mark4.base.Mark4FileReader(fh_raw, ntrack=None, decade=None, ref_time=None)
Bases: baseband.vlbi_base.base.VLBIFileReaderBase

Simple reader for Mark 4 files.

Wraps a binary filehandle, providing methods to help interpret the data, such as locate_frame, read_frame
and get_frame_rate.

Parameters

fh_raw
[filehandle] Filehandle of the raw binary data file.

ntrack
[int or None, optional.] Number of Mark 4 bitstreams. Can be determined automatically as
part of locating the first frame.

decade
[int or None] Decade in which the observations were taken. Can instead pass an approximate
ref_time.

ref_time
[Time or None] Reference time within 4 years of the observation time. Used only if decade
is not given.

Attributes Summary

info() Standardized information on Mark 4 file readers.

Methods Summary

close(self)
determine_ntrack(self[, maximum]) Determines the number of tracks, by seeking the next

frame.
find_header(self, \*args, \*\*kwargs) Find the nearest header from the current position.
get_frame_rate(self) Determine the number of frames per second.
locate_frame(self, \*args, \*\*kwargs) Deprecated since version 3.1.

locate_frames(self[, pattern, mask, . . . ]) Use a pattern to locate frame starts near the current
position.

Continued on next page

7.3. Reference/API 205

http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time


baseband Documentation, Release 3.1.0

Table 29 – continued from previous page
read_frame(self[, verify]) Read a single frame (header plus payload).
read_header(self) Read a single header from the file.
temporary_offset(self) Context manager for temporarily seeking to another

file position.

Attributes Documentation

info
Standardized information on Mark 4 file readers.

The info descriptor has a number of standard attributes, which are determined from arguments passed in
opening the file, from the first header (info.header0) and from possibly scanning the file to determine the
duration of frames. This class has two additional attributes specific to Mark 4 files (ntrack and offset0,
see below).

Examples

The most common use is simply to print information:

>>> from baseband.data import SAMPLE_MARK4
>>> from baseband import mark4
>>> fh = mark4.open(SAMPLE_MARK4, 'rb')
>>> fh.info
File information:
format = mark4
number_of_frames = 2
frame_rate = 400.0 Hz
sample_rate = 32.0 MHz
samples_per_frame = 80000
sample_shape = (8,)
bps = 2
complex_data = False
readable = True
ntrack = 64
offset0 = 2696

missing: decade, ref_time: needed to infer full times.

checks: decodable: True
>>> fh.close()

>>> fh = mark4.open(SAMPLE_MARK4, 'rb', decade=2010)
>>> fh.info
File information:
format = mark4
number_of_frames = 2
frame_rate = 400.0 Hz
sample_rate = 32.0 MHz
samples_per_frame = 80000
sample_shape = (8,)
bps = 2
complex_data = False
start_time = 2014-06-16T07:38:12.475000000
readable = True

(continues on next page)

206 Chapter 7. MARK 4



baseband Documentation, Release 3.1.0

(continued from previous page)

ntrack = 64
offset0 = 2696

checks: decodable: True
>>> fh.close()

Attributes

format
[str or None] File format, or None if the underlying file cannot be parsed.

frame_rate
[Quantity] Number of data frames per unit of time.

sample_rate
[Quantity] Complete samples per unit of time.

samples_per_frame
[int] Number of complete samples in each frame.

sample_shape
[tuple] Dimensions of each complete sample (e.g., (nchan,)).

bps
[int] Number of bits used to encode each elementary sample.

complex_data
[bool] Whether the data are complex.

start_time
[Time] Time of the first complete sample.

ntrack
[int] Number of “tape tracks” simulated in the disk file.

offset0
[int] Offset in bytes from the start of the file to the location of the first header.

readable
[bool] Whether the first sample could be read and decoded.

missing
[dict] Entries are keyed by names of arguments that should be passed to the file reader to
obtain full information. The associated entries explain why these arguments are needed.
For Mark 4, the possible entries are decade and ref_time.

errors
[dict] Any exceptions raised while trying to determine attributes. Keyed by the attributes.

7.3. Reference/API 207

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time


baseband Documentation, Release 3.1.0

Methods Documentation

close(self)

determine_ntrack(self, maximum=None)
Determines the number of tracks, by seeking the next frame.

Uses locate_frame to look for the first occurrence of a frame from the current position for all supported
ntrack values. Returns the first ntrack for which locate_frame is successful, setting the file’s ntrack
property appropriately, and leaving the file pointer at the start of the frame.

Parameters

maximum
[int, optional] Maximum number of bytes forward to search through. Default: twice the
frame size (20000 * ntrack // 8).

Returns

ntrack
[int or None] Number of Mark 4 bitstreams.

Raises

~baseband.vlbi_base.base.HeaderNotFoundError
If no frame was found for any value of ntrack.

find_header(self, *args, **kwargs)
Find the nearest header from the current position.

If successful, the file pointer is left at the start of the header.

Parameters are as for locate_frames.

Returns

header
Retrieved header.

Raises

~baseband.vlbi_base.base.HeaderNotFoundError
If no header could be located.

AssertionError
If the header did not pass verification.

get_frame_rate(self)
Determine the number of frames per second.

The frame rate is calculated from the time elapsed between the first two frames, as inferred from their time
stamps.

Returns

frame_rate
[Quantity] Frames per second.

208 Chapter 7. MARK 4

http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity


baseband Documentation, Release 3.1.0

locate_frame(self, *args, **kwargs)
Deprecated since version 3.1: The locate_frame function is deprecated and may be removed in a future
version. Use locate_frames or find_header instead.

Use a pattern to locate the frame nearest the current position.

Like locate_frames, but selects the closest frame and leaves the file pointer at its position.

Returns

location
[int] The location of the file pointer.

Raises

~baseband.vlbi_base.base.HeaderNotFoundError
If no frame was found.

locate_frames(self, pattern=None, *, mask=None, frame_nbytes=None, offset=0, forward=True, max-
imum=None, check=1)

Use a pattern to locate frame starts near the current position.

Parameters

pattern
[header, ~numpy.ndaray, bytes, or (iterable of) int, optional] Synchronization pattern to
look for. The default uses the Mark 4 sync pattern, plus that the bit before is 0. See
invariant_pattern.

mask
[~numpy.ndarray, bytes, int, or iterable of int.] Bit mask for the pattern, with 1 indicating
a given bit will be used the comparison. Only used if pattern is given and is not a header.

frame_nbytes
[int, optional] Frame size in bytes. Defaults to the frame size for ntrack. If given, over-
rides self.ntrack.

offset
[int, optional] Offset from the frame start that the pattern occurs. Only used if pattern is
given and not a header.

forward
[bool, optional] Seek forward if True (default), backward if False.

maximum
[int, optional] Maximum number of bytes to search away from the present location. Use 0
to check only at the current position.

check
[int or tuple of int, optional] Frame offsets where another sync pattern should be present
(if inside the file). Default: 1, i.e., a sync pattern should be present one frame after the one
found (independent of forward), thus helping to guarantee the frame is OK.

Returns

locations
[list of int] Locations of sync patterns within the range scanned, in order of proximity to
the starting position.

7.3. Reference/API 209

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False


baseband Documentation, Release 3.1.0

read_frame(self, verify=True)
Read a single frame (header plus payload).

Returns

frame
[Mark4Frame] With .header and .data properties that return the Mark4Header and data
encoded in the frame, respectively.

verify
[bool, optional] Whether to do basic checks of frame integrity. Default: True.

read_header(self)
Read a single header from the file.

Returns

header
[Mark4Header]

temporary_offset(self)
Context manager for temporarily seeking to another file position.

To be used as part of a with statement:

with fh_raw.temporary_offset() [as fh_raw]:
with-block

On exiting the with-block, the file pointer is moved back to its original position.

Mark4FileWriter

class baseband.mark4.base.Mark4FileWriter(fh_raw)
Bases: baseband.vlbi_base.base.VLBIFileBase

Simple writer for Mark 4 files.

Adds write_frame method to the VLBI binary file wrapper.

Methods Summary

close(self)
temporary_offset(self) Context manager for temporarily seeking to another

file position.
write_frame(self, data[, header]) Write a single frame (header plus payload).

210 Chapter 7. MARK 4

https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Methods Documentation

close(self)

temporary_offset(self)
Context manager for temporarily seeking to another file position.

To be used as part of a with statement:

with fh_raw.temporary_offset() [as fh_raw]:
with-block

On exiting the with-block, the file pointer is moved back to its original position.

write_frame(self, data, header=None, **kwargs)
Write a single frame (header plus payload).

Parameters

data
[ndarray or Mark4Frame] If an array, a header should be given, which will be used to get
the information needed to encode the array, and to construct the Mark 4 frame.

header
[Mark4Header] Can instead give keyword arguments to construct a header. Ignored if
payload is a Mark4Frame instance.

**kwargs :
If header is not given, these are used to initialize one.

Mark4StreamBase

class baseband.mark4.base.Mark4StreamBase(fh_raw, header0, sample_rate=None, squeeze=True, sub-
set=(), fill_value=0.0, verify=True)

Bases: baseband.vlbi_base.base.VLBIStreamBase

Base for Mark 4 streams.

Attributes Summary

bps Bits per elementary sample.
complex_data Whether the data are complex.
header0 First header of the file.
sample_rate Number of complete samples per second.
sample_shape Shape of a complete sample (possibly subset or

squeezed).
samples_per_frame Number of complete samples per frame.
squeeze Whether data arrays have dimensions with length

unity removed.
start_time Start time of the file.
subset Specific components of the complete sample to de-

code.
time Time of the sample pointer’s current offset in file.

Continued on next page

7.3. Reference/API 211

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


baseband Documentation, Release 3.1.0

Table 31 – continued from previous page
verify Whether to do consistency checks on frames being

read.

Methods Summary

close(self)
tell(self[, unit]) Current offset in the file.

Attributes Documentation

bps
Bits per elementary sample.

complex_data
Whether the data are complex.

header0
First header of the file.

sample_rate
Number of complete samples per second.

sample_shape
Shape of a complete sample (possibly subset or squeezed).

samples_per_frame
Number of complete samples per frame.

squeeze
Whether data arrays have dimensions with length unity removed.

If True, data read out has such dimensions removed, and data passed in for writing has them inserted.

start_time
Start time of the file.

See also time for the time of the sample pointer’s current offset.

subset
Specific components of the complete sample to decode.

The order of dimensions is the same as for sample_shape. Set by the class initializer.

time
Time of the sample pointer’s current offset in file.

See also start_time for the start time of the file.

verify
Whether to do consistency checks on frames being read.

212 Chapter 7. MARK 4

https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Methods Documentation

close(self)

tell(self, unit=None)
Current offset in the file.

Parameters

unit
[Unit or str, optional] Time unit the offset should be returned in. By default, no unit is
used, i.e., an integer enumerating samples is returned. For the special string ‘time’, the
absolute time is calculated.

Returns

offset
[int, Quantity, or Time] Offset in current file (or time at current position).

Mark4StreamReader

class baseband.mark4.base.Mark4StreamReader(fh_raw, sample_rate=None, ntrack=None,
decade=None, ref_time=None, squeeze=True, sub-
set=(), fill_value=0.0, verify='fix')

Bases: baseband.mark4.base.Mark4StreamBase, baseband.vlbi_base.base.VLBIStreamReaderBase

VLBI Mark 4 format reader.

Allows access to a Mark 4 file as a continuous series of samples. Parts of the data stream replaced by header
values are filled in.

Parameters

fh_raw
[filehandle] Filehandle of the raw Mark 4 stream.

sample_rate
[Quantity, optional] Number of complete samples per second, i.e. the rate at which each
channel is sampled. If None, will be inferred from scanning two frames of the file.

ntrack
[int or None, optional] Number of Mark 4 bitstreams. If None (default), will attempt to
automatically detect it by scanning the file.

decade
[int or None] Decade of the observation start time (eg. 2010 for 2018), needed to remove
ambiguity in the Mark 4 time stamp. Can instead pass an approximate ref_time.

ref_time
[Time or None] Reference time within 4 years of the start time of the observations. Used
only if decade is not given.

squeeze
[bool, optional] If True (default), remove any dimensions of length unity from decoded data.

7.3. Reference/API 213

http://docs.astropy.org/en/stable/api/astropy.units.Unit.html#astropy.units.Unit
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

subset
[indexing object, optional] Specific channels of the complete sample to decode (after possi-
ble squeezing). If an empty tuple (default), all channels are read.

fill_value
[float or complex, optional] Value to use for invalid or missing data. Default: 0.

verify
[bool or str, optional] Whether to do basic checks of frame integrity when reading. Default:
‘fix’, which implies basic verification and replacement of gaps with zeros.

Attributes Summary

bps Bits per elementary sample.
complex_data Whether the data are complex.
dtype
fill_value Value to use for invalid or missing data.
header0 First header of the file.
info() Standardized information on stream readers.
ndim Number of dimensions of the (squeezed/subset)

stream data.
sample_rate Number of complete samples per second.
sample_shape Shape of a complete sample (possibly subset or

squeezed).
samples_per_frame Number of complete samples per frame.
shape Shape of the (squeezed/subset) stream data.
size Total number of component samples in the

(squeezed/subset) stream data.
squeeze Whether data arrays have dimensions with length

unity removed.
start_time Start time of the file.
stop_time Time at the end of the file, just after the last sample.
subset Specific components of the complete sample to de-

code.
time Time of the sample pointer’s current offset in file.
verify Whether to do consistency checks on frames being

read.

Methods Summary

close(self)
read(self[, count, out]) Read a number of complete (or subset) samples.
readable(self) Whether the file can be read and decoded.
seek(self, offset[, whence]) Change the stream position.
tell(self[, unit]) Current offset in the file.

214 Chapter 7. MARK 4



baseband Documentation, Release 3.1.0

Attributes Documentation

bps
Bits per elementary sample.

complex_data
Whether the data are complex.

dtype

fill_value
Value to use for invalid or missing data. Default: 0.

header0
First header of the file.

info
Standardized information on stream readers.

The info descriptor provides a few standard attributes, most of which can also be accessed directly on the
stream filehandle, and tests basic readability of the stream. More detailed information on the underlying
file is stored in its info, accessible via info.file_info (and shown by __repr__).

Attributes

start_time
[Time] Time of the first complete sample.

stop_time
[Time] Time of the complete sample just beyond the end of the file.

sample_rate
[Quantity] Complete samples per unit of time.

shape
[tuple] Equivalent shape of the whole file, i.e., combining the number of complete samples
and the shape of those samples.

bps
[int] Number of bits used to encode each elementary sample.

complex_data
[bool] Whether the data are complex.

verify
[bool or str] The type of verification done by the stream reader.

readable
[bool] Whether the first and last samples could be read and decoded.

checks
[dict] Checks that were done to determine whether the file was readable (normally ‘con-
tinuous’ and ‘decodable’).

errors
[dict] Any exceptions raised while trying to determine attributes or doing checks. Keyed
by the attributes/checks.

warnings
[dict] Any warnings about the attributes or about the checks. Keyed by the at-
tributes/checks.

7.3. Reference/API 215

http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity


baseband Documentation, Release 3.1.0

ndim
Number of dimensions of the (squeezed/subset) stream data.

sample_rate
Number of complete samples per second.

sample_shape
Shape of a complete sample (possibly subset or squeezed).

samples_per_frame
Number of complete samples per frame.

shape
Shape of the (squeezed/subset) stream data.

size
Total number of component samples in the (squeezed/subset) stream data.

squeeze
Whether data arrays have dimensions with length unity removed.

If True, data read out has such dimensions removed, and data passed in for writing has them inserted.

start_time
Start time of the file.

See also time for the time of the sample pointer’s current offset, and (if available) stop_time for the time
at the end of the file.

stop_time
Time at the end of the file, just after the last sample.

See also start_time for the start time of the file, and time for the time of the sample pointer’s current
offset.

subset
Specific components of the complete sample to decode.

The order of dimensions is the same as for sample_shape. Set by the class initializer.

time
Time of the sample pointer’s current offset in file.

See also start_time for the start time, and (if available) stop_time for the end time, of the file.

verify
Whether to do consistency checks on frames being read.

Methods Documentation

close(self)

read(self, count=None, out=None)
Read a number of complete (or subset) samples.

The range retrieved can span multiple frames.

Parameters

216 Chapter 7. MARK 4

https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

count
[int or None, optional] Number of complete/subset samples to read. If None (default) or
negative, the whole file is read. Ignored if out is given.

out
[None or array, optional] Array to store the data in. If given, count will be inferred from
the first dimension; the other dimension should equal sample_shape.

Returns

out
[ndarray of float or complex] The first dimension is sample-time, and the remainder given
by sample_shape.

readable(self)
Whether the file can be read and decoded.

seek(self, offset, whence=0)
Change the stream position.

This works like a normal filehandle seek, but the offset is in samples (or a relative or absolute time).

Parameters

offset
[int, Quantity, or Time] Offset to move to. Can be an (integer) number of samples, an
offset in time units, or an absolute time.

whence
[{0, 1, 2, ‘start’, ‘current’, or ‘end’}, optional] Like regular seek, the offset is taken to be
from the start if whence=0 (default), from the current position if 1, and from the end if 2.
One can alternativey use ‘start’, ‘current’, or ‘end’ for 0, 1, or 2, respectively. Ignored if
offset is a time.

tell(self, unit=None)
Current offset in the file.

Parameters

unit
[Unit or str, optional] Time unit the offset should be returned in. By default, no unit is
used, i.e., an integer enumerating samples is returned. For the special string ‘time’, the
absolute time is calculated.

Returns

offset
[int, Quantity, or Time] Offset in current file (or time at current position).

7.3. Reference/API 217

https://docs.python.org/3/library/constants.html#None
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.units.Unit.html#astropy.units.Unit
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time


baseband Documentation, Release 3.1.0

Mark4StreamWriter

class baseband.mark4.base.Mark4StreamWriter(fh_raw, header0=None, sample_rate=None,
squeeze=True, **kwargs)

Bases: baseband.mark4.base.Mark4StreamBase, baseband.vlbi_base.base.VLBIStreamWriterBase

VLBI Mark 4 format writer.

Encodes and writes sequences of samples to file.

Parameters

raw
[filehandle] Which will write filled sets of frames to storage.

header0
[Mark4Header] Header for the first frame, holding time information, etc. Can instead give
keyword arguments to construct a header (see **kwargs).

sample_rate
[Quantity] Number of complete samples per second, i.e. the rate at which each channel is
sampled. Needed to calculate header timestamps.

squeeze
[bool, optional] If True (default), write accepts squeezed arrays as input, and adds any
dimensions of length unity.

**kwargs
If no header is given, an attempt is made to construct one from these. For a standard header,
this would include the following.

— Header keywords
[(see fromvalues())]

time
[Time] Start time of the file. Sets bcd-encoded unit year, day, hour, minute, second in the
header.

ntrack
[int] Number of Mark 4 bitstreams (equal to number of channels times fanout times bps)

bps
[int] Bits per elementary sample.

fanout
[int] Number of tracks over which a given channel is spread out.

Attributes Summary

bps Bits per elementary sample.
complex_data Whether the data are complex.
header0 First header of the file.
sample_rate Number of complete samples per second.
sample_shape Shape of a complete sample (possibly subset or

squeezed).
samples_per_frame Number of complete samples per frame.

Continued on next page

218 Chapter 7. MARK 4

http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
https://docs.python.org/3/library/constants.html#True
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time


baseband Documentation, Release 3.1.0

Table 35 – continued from previous page
squeeze Whether data arrays have dimensions with length

unity removed.
start_time Start time of the file.
subset Specific components of the complete sample to de-

code.
time Time of the sample pointer’s current offset in file.
verify Whether to do consistency checks on frames being

read.

Methods Summary

close(self)
tell(self[, unit]) Current offset in the file.
write(self, data[, valid]) Write data, buffering by frames as needed.

Attributes Documentation

bps
Bits per elementary sample.

complex_data
Whether the data are complex.

header0
First header of the file.

sample_rate
Number of complete samples per second.

sample_shape
Shape of a complete sample (possibly subset or squeezed).

samples_per_frame
Number of complete samples per frame.

squeeze
Whether data arrays have dimensions with length unity removed.

If True, data read out has such dimensions removed, and data passed in for writing has them inserted.

start_time
Start time of the file.

See also time for the time of the sample pointer’s current offset.

subset
Specific components of the complete sample to decode.

The order of dimensions is the same as for sample_shape. Set by the class initializer.

time
Time of the sample pointer’s current offset in file.

See also start_time for the start time of the file.

verify
Whether to do consistency checks on frames being read.

7.3. Reference/API 219

https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Methods Documentation

close(self)

tell(self, unit=None)
Current offset in the file.

Parameters

unit
[Unit or str, optional] Time unit the offset should be returned in. By default, no unit is
used, i.e., an integer enumerating samples is returned. For the special string ‘time’, the
absolute time is calculated.

Returns

offset
[int, Quantity, or Time] Offset in current file (or time at current position).

write(self, data, valid=True)
Write data, buffering by frames as needed.

Parameters

data
[ndarray] Piece of data to be written, with sample dimensions as given by sample_shape.
This should be properly scaled to make best use of the dynamic range delivered by the
encoding.

valid
[bool, optional] Whether the current data are valid. Default: True.

220 Chapter 7. MARK 4

http://docs.astropy.org/en/stable/api/astropy.units.Unit.html#astropy.units.Unit
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Class Inheritance Diagram

Mark4FileReaderVLBIFileReaderBase

Mark4FileWriter

VLBIFileBase

Mark4StreamBase

Mark4StreamReader

Mark4StreamWriter

VLBIStreamBase

VLBIStreamReaderBase

VLBIStreamWriterBase

7.3. Reference/API 221



baseband Documentation, Release 3.1.0

222 Chapter 7. MARK 4



CHAPTER

EIGHT

DADA

Distributed Acquisition and Data Analysis (DADA) format data files contain a single data frame consisting of an
ASCII header of typically 4096 bytes followed by a payload. DADA is defined by its software specification and
actual usage; files are described by an ASCII header.

8.1 Usage

This section covers reading and writing DADA files with Baseband; general usage is covered in the Using Baseband
section. For situations in which one is unsure of a file’s format, Baseband features the general baseband.open and
baseband.file_info functions, which are also discussed in Using Baseband. The examples below use the sample
file baseband/data/sample.dada, and the the astropy.units and baseband.dada modules:

>>> from baseband import dada
>>> import astropy.units as u
>>> from baseband.data import SAMPLE_DADA

Single files can be opened with open in binary mode. DADA files typically consist of just a single header and payload,
and can be read into a single DADAFrame.

>>> fb = dada.open(SAMPLE_DADA, 'rb')
>>> frame = fb.read_frame()
>>> frame.shape
(16000, 2, 1)
>>> frame[:3].squeeze()
array([[ -38.-38.j, -38.-38.j],

[ -38.-38.j, -40. +0.j],
[-105.+60.j, 85.-15.j]], dtype=complex64)

>>> fb.close()

Since the files can be quite large, the payload is mapped (with numpy.memmap), so that if one accesses part of the data,
only the corresponding parts of the encoded payload are loaded into memory (since the sample file is encoded using 8
bits, the above example thus loads 12 bytes into memory).

Opening in stream mode wraps the low-level routines such that reading and writing is in units of samples, and provides
access to header information:

>>> fh = dada.open(SAMPLE_DADA, 'rs')
>>> fh
<DADAStreamReader name=... offset=0

sample_rate=16.0 MHz, samples_per_frame=16000,
sample_shape=SampleShape(npol=2), bps=8,
start_time=2013-07-02T01:39:20.000>

(continues on next page)

223

http://psrdada.sourceforge.net/manuals/Specification.pdf
http://docs.astropy.org/en/stable/units/index.html#module-astropy.units
https://docs.scipy.org/doc/numpy/reference/generated/numpy.memmap.html#numpy.memmap


baseband Documentation, Release 3.1.0

(continued from previous page)

>>> d = fh.read(10000)
>>> d.shape
(10000, 2)
>>> d[:3]
array([[ -38.-38.j, -38.-38.j],

[ -38.-38.j, -40. +0.j],
[-105.+60.j, 85.-15.j]], dtype=complex64)

>>> fh.close()

To set up a file for writing as a stream is possible as well:

>>> from astropy.time import Time
>>> fw = dada.open('{utc_start}.{obs_offset:016d}.000000.dada', 'ws',
... sample_rate=16*u.MHz, samples_per_frame=5000,
... npol=2, nchan=1, bps=8, complex_data=True,
... time=Time('2013-07-02T01:39:20.000'))
>>> fw.write(d)
>>> fw.close()
>>> import os
>>> [f for f in sorted(os.listdir('.')) if f.startswith('2013')]
['2013-07-02-01:39:20.0000000000000000.000000.dada',
'2013-07-02-01:39:20.0000000000020000.000000.dada']
>>> fr = dada.open('2013-07-02-01:39:20.{obs_offset:016d}.000000.dada', 'rs')
>>> d2 = fr.read()
>>> (d == d2).all()
True
>>> fr.close()

Here, we have used an even smaller size of the payload, to show how one can define multiple files. DADA
data are typically stored in sequences of files. If one passes a time-ordered list or tuple of filenames to open,
it uses sequentialfile.open to access the sequence. If, as above, one passes a template string, open uses
DADAFileNameSequencer to create and use a filename sequencer. (See API links for further details.)

8.2 Further details

8.2.1 DADA Headers

The specification of “Distributed Acquisition and Data Analysis” (DADA) headers is part of the DADA software
specification. In particular, its appendix B.3 defines expected header keywords, which we reproduce below. We
separate those for which the meaning has been taken from comments in an actual DADA header from Effelsberg, as
well as additional keywords found in that header that do not appear in the specification.

Keyword Description
Primary (from appendix B.3 [Default])
HEADER name of the header [DADA]
HDR_VERSION version of the header [1.0]
HDR_SIZE size of the header in bytes [4096]
INSTRUMENT name of the instrument
PRIMARY host name of the primary node on which the data were acquired
HOSTNAME host name of the machine on which data were written
FILE_NAME full path of the file to which data were written

Continued on next page

224 Chapter 8. DADA

http://psrdada.sourceforge.net/manuals/Specification.pdf
http://psrdada.sourceforge.net/manuals/Specification.pdf


baseband Documentation, Release 3.1.0

Table 1 – continued from previous page
Keyword Description
FILE_SIZE requested size of data files
FILE_NUMBER number of data files written prior to this one
OBS_ID the identifier for the observations
UTC_START rising edge of the first sample (yyyy-mm-dd-hh:mm:ss)
MJD_START the MJD of the first sample in the observation
OBS_OFFSET the number of bytes from the start of the observation
OBS_OVERLAP the amount by which neighbouring files overlap
Secondary (description from Effelsberg sample file)
TELESCOPE name of the telescope
SOURCE source name
FREQ observation frequency
BW bandwidth in MHz (-ve lower sb)
NPOL number of polarizations observed
NBIT number of bits per sample
NDIM dimension of samples (2=complex, 1=real)
TSAMP sampling interval in microseconds
RA J2000 Right ascension of the source (hh:mm:ss.ss)
DEC J2000 Declination of the source (ddd:mm:ss.s)
Other (found in Effelsberg sample file)
PIC_VERSION Version of the PIC FPGA Software [1.0]
RECEIVER frontend receiver
SECONDARY secondary host name
NCHAN number of channels here
RESOLUTION a parameter that is unclear
DSB (no description)

8.3 Reference/API

8.3.1 baseband.dada Package

Distributed Acquisition and Data Analysis (DADA) format reader/writer.

Functions

open(name[, mode]) Open DADA file(s) for reading or writing.

open

baseband.dada.open(name, mode='rs', **kwargs)
Open DADA file(s) for reading or writing.

Opened as a binary file, one gets a wrapped filehandle that adds methods to read/write a frame. Opened as a
stream, the handle is wrapped further, with methods such as reading and writing to the file as if it were a stream
of samples.

Parameters

8.3. Reference/API 225



baseband Documentation, Release 3.1.0

name
[str or filehandle, or sequence of str] File name, filehandle, or sequence of file names (see
Notes).

mode
[{‘rb’, ‘wb’, ‘rs’, or ‘ws’}, optional] Whether to open for reading or writing, and as a regular
binary file or as a stream. Default: ‘rs’, for reading a stream.

**kwargs
Additional arguments when opening the file as a stream.

— For reading a stream
[(see DADAStreamReader)]

squeeze
[bool, optional] If True (default), remove any dimensions of length unity from decoded data.

subset
[indexing object or tuple of objects, optional] Specific components of the complete sample
to decode (after possibly squeezing). If a single indexing object is passed, it selects polar-
izations. With a tuple, the first selects polarizations and the second selects channels. If the
tuple is empty (default), all components are read.

— For writing a stream
[(see DADAStreamWriter)]

header0
[DADAHeader] Header for the first frame, holding time information, etc. Can instead give
keyword arguments to construct a header (see **kwargs).

squeeze
[bool, optional] If True (default), writer accepts squeezed arrays as input, and adds any
dimensions of length unity.

**kwargs
If the header is not given, an attempt will be made to construct one with any further keyword
arguments.

— Header keywords
[(see fromvalues())]

time
[Time] Start time of the file.

samples_per_frame
[int,] Number of complete samples per frame.

sample_rate
[Quantity] Number of complete samples per second, i.e. the rate at which each channel of
each polarization is sampled.

offset
[Quantity or TimeDelta, optional] Time offset from the start of the whole observation
(default: 0).

npol
[int, optional] Number of polarizations (default: 1).

nchan
[int, optional] Number of channels (default: 1).

226 Chapter 8. DADA

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.TimeDelta.html#astropy.time.TimeDelta


baseband Documentation, Release 3.1.0

complex_data
[bool, optional] Whether data are complex (default: False).

bps
[int, optional] Bits per elementary sample, i.e. per real or imaginary component for complex
data (default: 8).

Returns

Filehandle
DADAFileReader or DADAFileWriter (binary), or DADAStreamReader or
DADAStreamWriter (stream).

Notes

For streams, one can also pass to name a list of files, or a template string that can be formatted using ‘frame_nr’,
‘obs_offset’, and other header keywords (by DADAFileNameSequencer).

For writing, one can mimic what is done at quite a few telescopes by using the template
‘{utc_start}_{obs_offset:016d}.000000.dada’. Unlike for the VLBI openers, file_size is set to the size of
one frame as given by the header.

For reading, to read series such as the above, use something like ‘2013-07-02-
01:37:40_{obs_offset:016d}.000000.dada’. Note that here we have to pass in the date explicitly, since
the template is used to get the first file name, before any header is read, and therefore the only keywords
available are ‘frame_nr’, ‘file_nr’, and ‘obs_offset’, all of which are assumed to be zero for the first file. To
avoid this restriction, pass in keyword arguments with values appropriate for the first file.

One may also pass in a sequentialfile object (opened in ‘rb’ mode for reading or ‘w+b’ for writing), though
for typical use cases it is practically identical to passing in a list or template.

Classes

DADAFrame(header, payload[, valid, verify]) Representation of a DADA file, consisting of a header
and payload.

DADAHeader(*args[, verify, mutable]) DADA baseband file format header.
DADAPayload(words[, header, sample_shape, . . . ]) Container for decoding and encoding DADA payloads.

DADAFrame

class baseband.dada.DADAFrame(header, payload, valid=True, verify=True)
Bases: baseband.vlbi_base.frame.VLBIFrameBase

Representation of a DADA file, consisting of a header and payload.

Parameters

header
[DADAHeader] Wrapper around the header lines, providing access to the values.

payload
[DADAPayload] Wrapper around the payload, provding mechanisms to decode it.

8.3. Reference/API 227

https://docs.python.org/3/library/constants.html#False


baseband Documentation, Release 3.1.0

valid
[bool, optional] Whether the data are valid. Default: True.

verify
[bool, optional] Whether to do basic verification of integrity. Default: True.

Notes

DADA files do not support storing whether data are valid or not on disk. Hence, this has to be determined
independently. If valid=False, any decoded data are set to cls.fill_value (by default, 0).

The Frame can also be instantiated using class methods:

fromfile : read header and map or read payload from a filehandle

fromdata : encode data as payload

Of course, one can also do the opposite:

tofile : method to write header and payload to filehandle

data : property that yields full decoded payload

One can decode part of the payload by indexing or slicing the frame.

A number of properties are defined: shape, dtype and size are the shape, type and number of complete samples
of the data array, and nbytes the frame size in bytes. Furthermore, the frame acts as a dictionary, with keys
those of the header. Any attribute that is not defined on the frame itself, such as .time will be looked up on the
header as well.

Attributes Summary

data Full decoded frame.
dtype Numeric type of the frame data.
fill_value Value to replace invalid data in the frame.
nbytes Size of the encoded frame in bytes.
ndim Number of dimensions of the frame data.
sample_shape Shape of a sample in the frame (nchan,).
shape Shape of the frame data.
size Total number of component samples in the frame

data.
valid Whether frame contains valid data.

Methods Summary

fromdata(data[, header, valid, verify]) Construct frame from data and header.
fromfile(fh[, memmap, valid, verify]) Read a frame from a filehandle, possible mapping the

payload.
keys(self)
tofile(self, fh) Write encoded frame to filehandle.
verify(self) Simple verification.

228 Chapter 8. DADA

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Attributes Documentation

data
Full decoded frame.

dtype
Numeric type of the frame data.

fill_value
Value to replace invalid data in the frame.

nbytes
Size of the encoded frame in bytes.

ndim
Number of dimensions of the frame data.

sample_shape
Shape of a sample in the frame (nchan,).

shape
Shape of the frame data.

size
Total number of component samples in the frame data.

valid
Whether frame contains valid data.

Methods Documentation

classmethod fromdata(data, header=None, valid=True, verify=True, **kwargs)
Construct frame from data and header.

Note that since DADA files are generally very large, one would normally map the file, and then set pieces
of it by assigning to slices of the frame. See memmap_frame.

Parameters

data
[ndarray] Array holding complex or real data to be encoded.

header
[DADAHeader or None] If not given, will attempt to generate one using the keywords.

valid
[bool, optional] Whether the data are valid (default: True). Note that this information
cannot be written to disk.

verify
[bool, optional] Whether or not to do basic assertions that check the integrity. Default:
True.

**kwargs
If header is not given, these are used to initialize one.

classmethod fromfile(fh, memmap=True, valid=True, verify=True)
Read a frame from a filehandle, possible mapping the payload.

Parameters

8.3. Reference/API 229

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

fh
[filehandle] To read header from.

memmap
[bool, optional] If True (default), use memmap to map the payload. If False, just read it
from disk.

valid
[bool, optional] Whether the data are valid (default: True). Note that this cannot be in-
ferred from the header or payload itself. If False, any data read will be set to cls.
fill_value.

verify
[bool, optional] Whether to do basic verification of integrity. Default: True.

keys(self)

tofile(self, fh)
Write encoded frame to filehandle.

verify(self)
Simple verification. To be added to by subclasses.

DADAHeader

class baseband.dada.DADAHeader(*args, verify=True, mutable=True, **kwargs)
Bases: collections.OrderedDict

DADA baseband file format header.

Defines a number of routines common to all baseband format headers.

Parameters

*args
[str or iterable] If a string, parsed as a DADA header from a file, otherwise as for the Or-
deredDict baseclass.

verify
[bool, optional] Whether to do minimal verification that the header is consistent with the
DADA standard. Default: True.

mutable
[bool, optional] Whether to allow the header to be changed after initialisation. Default:
True.

**kwargs
Any further header keywords to be set. If any value is a 2-item tuple, the second one will be
considered a comment.

230 Chapter 8. DADA

https://docs.python.org/3/library/constants.html#True
https://docs.scipy.org/doc/numpy/reference/generated/numpy.memmap.html#numpy.memmap
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Notes

Like OrderedDict, in order to ensure keywords are kept in the right order, one should pass on values as a tuple,
not as a dict. E.g., to copy a header, one should not do DADAHeader(**header), but rather:

DADAHeader(((key, header[key]) for key in header))

or, to also keep the comments:

DADAHeader(((key, (header[key], header.comments[key]))
for key in header))

Attributes Summary

bps Bits per elementary sample.
complex_data Whether the data are complex.
frame_nbytes Size of the frame in bytes.
nbytes Size of the header in bytes.
offset Offset from start of observation in units of time.
payload_nbytes Size of the payload in bytes.
sample_rate Number of complete samples per second.
sample_shape Shape of a sample in the payload (npol, nchan).
samples_per_frame Number of complete samples in the frame.
sideband True if upper sideband.
start_time Start time of the observation.
time Start time of the part of the observation covered by

this header.

Methods Summary

clear()
copy(self) Create a mutable and independent copy of the header.
fromfile(fh[, verify]) Reads in DADA header block from a file.
fromkeys(\*args, \*\*kwargs) Initialise a header from keyword values.
fromvalues(\*\*kwargs) Initialise a header from parsed values.
get(self, key[, default]) Return the value for key if key is in the dictionary,

else default.
items()
keys()
move_to_end(self, /, key[, last]) Move an existing element to the end (or beginning if

last is false).
pop() value.
popitem(self, /[, last]) Remove and return a (key, value) pair from the dic-

tionary.
setdefault(self, /, key[, default]) Insert key with a value of default if key is not in the

dictionary.
tofile(self, fh) Write DADA file header to filehandle.
update(self, \*[, verify]) Update the header with new values.
values()

Continued on next page

8.3. Reference/API 231

https://docs.python.org/3/library/collections.html#collections.OrderedDict


baseband Documentation, Release 3.1.0

Table 7 – continued from previous page
verify(self) Basic check of integrity.

Attributes Documentation

bps
Bits per elementary sample.

complex_data
Whether the data are complex.

frame_nbytes
Size of the frame in bytes.

nbytes
Size of the header in bytes.

offset
Offset from start of observation in units of time.

payload_nbytes
Size of the payload in bytes.

sample_rate
Number of complete samples per second.

Can be set with a negative quantity to set sideband.

sample_shape
Shape of a sample in the payload (npol, nchan).

samples_per_frame
Number of complete samples in the frame.

sideband
True if upper sideband.

start_time
Start time of the observation.

time
Start time of the part of the observation covered by this header.

Methods Documentation

clear()

copy(self)
Create a mutable and independent copy of the header.

classmethod fromfile(fh, verify=True)
Reads in DADA header block from a file.

The file pointer should be at the start.

Parameters

fh
[filehandle] To read data from.

232 Chapter 8. DADA



baseband Documentation, Release 3.1.0

verify: bool, optional
Whether to do basic checks on whether the header is valid. Default: True.

classmethod fromkeys(*args, **kwargs)
Initialise a header from keyword values.

Like fromvalues, but without any interpretation of keywords.

This just calls the class initializer; it is present for compatibility with other header classes only.

classmethod fromvalues(**kwargs)
Initialise a header from parsed values.

Here, the parsed values must be given as keyword arguments, i.e., for any header, cls.
fromvalues(**header) == header.

However, unlike for the fromkeys class method, data can also be set using arguments named after header
methods, such as time.

Furthermore, some header defaults are set in DADAHeader._defaults.

get(self, key, default=None, /)
Return the value for key if key is in the dictionary, else default.

items()

keys()

move_to_end(self, /, key, last=True)
Move an existing element to the end (or beginning if last is false).

Raise KeyError if the element does not exist.

pop()
value. If key is not found, d is returned if given, otherwise KeyError is raised.

popitem(self, /, last=True)
Remove and return a (key, value) pair from the dictionary.

Pairs are returned in LIFO order if last is true or FIFO order if false.

setdefault(self, /, key, default=None)
Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

tofile(self, fh)
Write DADA file header to filehandle.

Parts of the header beyond the ascii lines are filled with 0x00. Note that file should in principle be at the
start, but we don’t check for that since that would break SequentialFileWriter.

update(self, *, verify=True, **kwargs)
Update the header with new values.

Here, any keywords matching properties are processed as well, in the order set by the class (in
_properties), and after all other keywords have been processed.

Parameters

verify
[bool, optional] If True (default), verify integrity after updating.

8.3. Reference/API 233

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

**kwargs
Arguments used to set keywords and properties.

values()

verify(self)
Basic check of integrity.

DADAPayload

class baseband.dada.DADAPayload(words, header=None, sample_shape=(), bps=8, complex_data=False)
Bases: baseband.vlbi_base.payload.VLBIPayloadBase

Container for decoding and encoding DADA payloads.

Parameters

words
[ndarray] Array containg LSB unsigned words (with the right size) that encode the payload.

header
[DADAHeader] Header that provides information about how the payload is encoded. If not
given, the following arguments have to be passed in.

bps
[int, optional] Number of bits per sample part (i.e., per channel and per real or imaginary
component). Default: 8.

sample_shape
[tuple, optional] Shape of the samples; e.g., (nchan,). Default: ().

complex_data
[bool, optional] Whether data are complex. Default: False.

Attributes Summary

data Full decoded payload.
dtype Numeric type of the decoded data array.
nbytes Size of the payload in bytes.
ndim Number of dimensions of the decoded data array.
shape Shape of the decoded data array.
size Total number of component samples in the decoded

data array.

234 Chapter 8. DADA

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#False


baseband Documentation, Release 3.1.0

Methods Summary

fromdata(data[, header, bps]) Encode data as a payload.
fromfile(fh[, header, memmap, payload_nbytes]) Read or map encoded data in file.
tofile(self, fh) Write payload to filehandle.

Attributes Documentation

data
Full decoded payload.

dtype
Numeric type of the decoded data array.

nbytes
Size of the payload in bytes.

ndim
Number of dimensions of the decoded data array.

shape
Shape of the decoded data array.

size
Total number of component samples in the decoded data array.

Methods Documentation

classmethod fromdata(data, header=None, bps=2)
Encode data as a payload.

Parameters

data
[ndarray] Data to be encoded. The last dimension is taken as the number of channels.

header
[header instance, optional] If given, used to infer the bps.

bps
[int, optional] Bits per elementary sample, i.e., per channel and per real or imaginary
component, used if header is not given. Default: 2.

classmethod fromfile(fh, header=None, memmap=False, payload_nbytes=None, **kwargs)
Read or map encoded data in file.

Parameters

fh
[filehandle] Handle to the file which will be read or mapped.

header
[DADAHeader, optional] If given, used to infer payload_nbytes, bps, sample_shape, and
complex_data. If not given, those have to be passed in.

8.3. Reference/API 235

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


baseband Documentation, Release 3.1.0

memmap
[bool, optional] If False (default), read from file. Otherwise, map the file in memory (see
memmap).

payload_nbytes
[int, optional] Number of bytes to read (default: as given in header, cls._nbytes, or, for
mapping, to the end of the file).

**kwargs
Additional arguments are passed on to the class initializer. These are only needed if
header is not given.

tofile(self, fh)
Write payload to filehandle.

Class Inheritance Diagram

DADAFrameVLBIFrameBase

DADAHeaderOrderedDict

DADAPayloadVLBIPayloadBase

8.3.2 baseband.dada.header Module

Definitions for DADA pulsar baseband headers.

Implements a DADAHeader class used to store header definitions in a FITS header, and read & write these from files.

The DADA headers are described in the DADA software specification, at http://psrdada.sourceforge.net/manuals/
Specification.pdf

See also DADA Headers.

Classes

DADAHeader(*args[, verify, mutable]) DADA baseband file format header.

236 Chapter 8. DADA

https://docs.python.org/3/library/constants.html#False
https://docs.scipy.org/doc/numpy/reference/generated/numpy.memmap.html#numpy.memmap
http://psrdada.sourceforge.net/manuals/Specification.pdf
http://psrdada.sourceforge.net/manuals/Specification.pdf


baseband Documentation, Release 3.1.0

DADAHeader

class baseband.dada.header.DADAHeader(*args, verify=True, mutable=True, **kwargs)
Bases: collections.OrderedDict

DADA baseband file format header.

Defines a number of routines common to all baseband format headers.

Parameters

*args
[str or iterable] If a string, parsed as a DADA header from a file, otherwise as for the Or-
deredDict baseclass.

verify
[bool, optional] Whether to do minimal verification that the header is consistent with the
DADA standard. Default: True.

mutable
[bool, optional] Whether to allow the header to be changed after initialisation. Default:
True.

**kwargs
Any further header keywords to be set. If any value is a 2-item tuple, the second one will be
considered a comment.

Notes

Like OrderedDict, in order to ensure keywords are kept in the right order, one should pass on values as a tuple,
not as a dict. E.g., to copy a header, one should not do DADAHeader(**header), but rather:

DADAHeader(((key, header[key]) for key in header))

or, to also keep the comments:

DADAHeader(((key, (header[key], header.comments[key]))
for key in header))

Attributes Summary

bps Bits per elementary sample.
complex_data Whether the data are complex.
frame_nbytes Size of the frame in bytes.
nbytes Size of the header in bytes.
offset Offset from start of observation in units of time.
payload_nbytes Size of the payload in bytes.
sample_rate Number of complete samples per second.
sample_shape Shape of a sample in the payload (npol, nchan).
samples_per_frame Number of complete samples in the frame.
sideband True if upper sideband.
start_time Start time of the observation.

Continued on next page

8.3. Reference/API 237

https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/collections.html#collections.OrderedDict


baseband Documentation, Release 3.1.0

Table 11 – continued from previous page
time Start time of the part of the observation covered by

this header.

Methods Summary

clear()
copy(self) Create a mutable and independent copy of the header.
fromfile(fh[, verify]) Reads in DADA header block from a file.
fromkeys(\*args, \*\*kwargs) Initialise a header from keyword values.
fromvalues(\*\*kwargs) Initialise a header from parsed values.
get(self, key[, default]) Return the value for key if key is in the dictionary,

else default.
items()
keys()
move_to_end(self, /, key[, last]) Move an existing element to the end (or beginning if

last is false).
pop() value.
popitem(self, /[, last]) Remove and return a (key, value) pair from the dic-

tionary.
setdefault(self, /, key[, default]) Insert key with a value of default if key is not in the

dictionary.
tofile(self, fh) Write DADA file header to filehandle.
update(self, \*[, verify]) Update the header with new values.
values()
verify(self) Basic check of integrity.

Attributes Documentation

bps
Bits per elementary sample.

complex_data
Whether the data are complex.

frame_nbytes
Size of the frame in bytes.

nbytes
Size of the header in bytes.

offset
Offset from start of observation in units of time.

payload_nbytes
Size of the payload in bytes.

sample_rate
Number of complete samples per second.

Can be set with a negative quantity to set sideband.

sample_shape
Shape of a sample in the payload (npol, nchan).

238 Chapter 8. DADA



baseband Documentation, Release 3.1.0

samples_per_frame
Number of complete samples in the frame.

sideband
True if upper sideband.

start_time
Start time of the observation.

time
Start time of the part of the observation covered by this header.

Methods Documentation

clear()

copy(self)
Create a mutable and independent copy of the header.

classmethod fromfile(fh, verify=True)
Reads in DADA header block from a file.

The file pointer should be at the start.

Parameters

fh
[filehandle] To read data from.

verify: bool, optional
Whether to do basic checks on whether the header is valid. Default: True.

classmethod fromkeys(*args, **kwargs)
Initialise a header from keyword values.

Like fromvalues, but without any interpretation of keywords.

This just calls the class initializer; it is present for compatibility with other header classes only.

classmethod fromvalues(**kwargs)
Initialise a header from parsed values.

Here, the parsed values must be given as keyword arguments, i.e., for any header, cls.
fromvalues(**header) == header.

However, unlike for the fromkeys class method, data can also be set using arguments named after header
methods, such as time.

Furthermore, some header defaults are set in DADAHeader._defaults.

get(self, key, default=None, /)
Return the value for key if key is in the dictionary, else default.

items()

keys()

move_to_end(self, /, key, last=True)
Move an existing element to the end (or beginning if last is false).

8.3. Reference/API 239

https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Raise KeyError if the element does not exist.

pop()
value. If key is not found, d is returned if given, otherwise KeyError is raised.

popitem(self, /, last=True)
Remove and return a (key, value) pair from the dictionary.

Pairs are returned in LIFO order if last is true or FIFO order if false.

setdefault(self, /, key, default=None)
Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

tofile(self, fh)
Write DADA file header to filehandle.

Parts of the header beyond the ascii lines are filled with 0x00. Note that file should in principle be at the
start, but we don’t check for that since that would break SequentialFileWriter.

update(self, *, verify=True, **kwargs)
Update the header with new values.

Here, any keywords matching properties are processed as well, in the order set by the class (in
_properties), and after all other keywords have been processed.

Parameters

verify
[bool, optional] If True (default), verify integrity after updating.

**kwargs
Arguments used to set keywords and properties.

values()

verify(self)
Basic check of integrity.

Class Inheritance Diagram

DADAHeaderOrderedDict

240 Chapter 8. DADA

https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

8.3.3 baseband.dada.payload Module

Payload for DADA format.

Classes

DADAPayload(words[, header, sample_shape, . . . ]) Container for decoding and encoding DADA payloads.

DADAPayload

class baseband.dada.payload.DADAPayload(words, header=None, sample_shape=(), bps=8, com-
plex_data=False)

Bases: baseband.vlbi_base.payload.VLBIPayloadBase

Container for decoding and encoding DADA payloads.

Parameters

words
[ndarray] Array containg LSB unsigned words (with the right size) that encode the payload.

header
[DADAHeader] Header that provides information about how the payload is encoded. If not
given, the following arguments have to be passed in.

bps
[int, optional] Number of bits per sample part (i.e., per channel and per real or imaginary
component). Default: 8.

sample_shape
[tuple, optional] Shape of the samples; e.g., (nchan,). Default: ().

complex_data
[bool, optional] Whether data are complex. Default: False.

Attributes Summary

data Full decoded payload.
dtype Numeric type of the decoded data array.
nbytes Size of the payload in bytes.
ndim Number of dimensions of the decoded data array.
shape Shape of the decoded data array.
size Total number of component samples in the decoded

data array.

8.3. Reference/API 241

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#False


baseband Documentation, Release 3.1.0

Methods Summary

fromdata(data[, header, bps]) Encode data as a payload.
fromfile(fh[, header, memmap, payload_nbytes]) Read or map encoded data in file.
tofile(self, fh) Write payload to filehandle.

Attributes Documentation

data
Full decoded payload.

dtype
Numeric type of the decoded data array.

nbytes
Size of the payload in bytes.

ndim
Number of dimensions of the decoded data array.

shape
Shape of the decoded data array.

size
Total number of component samples in the decoded data array.

Methods Documentation

classmethod fromdata(data, header=None, bps=2)
Encode data as a payload.

Parameters

data
[ndarray] Data to be encoded. The last dimension is taken as the number of channels.

header
[header instance, optional] If given, used to infer the bps.

bps
[int, optional] Bits per elementary sample, i.e., per channel and per real or imaginary
component, used if header is not given. Default: 2.

classmethod fromfile(fh, header=None, memmap=False, payload_nbytes=None, **kwargs)
Read or map encoded data in file.

Parameters

fh
[filehandle] Handle to the file which will be read or mapped.

header
[DADAHeader, optional] If given, used to infer payload_nbytes, bps, sample_shape, and
complex_data. If not given, those have to be passed in.

242 Chapter 8. DADA

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


baseband Documentation, Release 3.1.0

memmap
[bool, optional] If False (default), read from file. Otherwise, map the file in memory (see
memmap).

payload_nbytes
[int, optional] Number of bytes to read (default: as given in header, cls._nbytes, or, for
mapping, to the end of the file).

**kwargs
Additional arguments are passed on to the class initializer. These are only needed if
header is not given.

tofile(self, fh)
Write payload to filehandle.

Class Inheritance Diagram

DADAPayloadVLBIPayloadBase

8.3.4 baseband.dada.frame Module

Classes

DADAFrame(header, payload[, valid, verify]) Representation of a DADA file, consisting of a header
and payload.

DADAFrame

class baseband.dada.frame.DADAFrame(header, payload, valid=True, verify=True)
Bases: baseband.vlbi_base.frame.VLBIFrameBase

Representation of a DADA file, consisting of a header and payload.

Parameters

header
[DADAHeader] Wrapper around the header lines, providing access to the values.

payload
[DADAPayload] Wrapper around the payload, provding mechanisms to decode it.

valid
[bool, optional] Whether the data are valid. Default: True.

verify
[bool, optional] Whether to do basic verification of integrity. Default: True.

8.3. Reference/API 243

https://docs.python.org/3/library/constants.html#False
https://docs.scipy.org/doc/numpy/reference/generated/numpy.memmap.html#numpy.memmap
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Notes

DADA files do not support storing whether data are valid or not on disk. Hence, this has to be determined
independently. If valid=False, any decoded data are set to cls.fill_value (by default, 0).

The Frame can also be instantiated using class methods:

fromfile : read header and map or read payload from a filehandle

fromdata : encode data as payload

Of course, one can also do the opposite:

tofile : method to write header and payload to filehandle

data : property that yields full decoded payload

One can decode part of the payload by indexing or slicing the frame.

A number of properties are defined: shape, dtype and size are the shape, type and number of complete samples
of the data array, and nbytes the frame size in bytes. Furthermore, the frame acts as a dictionary, with keys
those of the header. Any attribute that is not defined on the frame itself, such as .time will be looked up on the
header as well.

Attributes Summary

data Full decoded frame.
dtype Numeric type of the frame data.
fill_value Value to replace invalid data in the frame.
nbytes Size of the encoded frame in bytes.
ndim Number of dimensions of the frame data.
sample_shape Shape of a sample in the frame (nchan,).
shape Shape of the frame data.
size Total number of component samples in the frame

data.
valid Whether frame contains valid data.

Methods Summary

fromdata(data[, header, valid, verify]) Construct frame from data and header.
fromfile(fh[, memmap, valid, verify]) Read a frame from a filehandle, possible mapping the

payload.
keys(self)
tofile(self, fh) Write encoded frame to filehandle.
verify(self) Simple verification.

244 Chapter 8. DADA



baseband Documentation, Release 3.1.0

Attributes Documentation

data
Full decoded frame.

dtype
Numeric type of the frame data.

fill_value
Value to replace invalid data in the frame.

nbytes
Size of the encoded frame in bytes.

ndim
Number of dimensions of the frame data.

sample_shape
Shape of a sample in the frame (nchan,).

shape
Shape of the frame data.

size
Total number of component samples in the frame data.

valid
Whether frame contains valid data.

Methods Documentation

classmethod fromdata(data, header=None, valid=True, verify=True, **kwargs)
Construct frame from data and header.

Note that since DADA files are generally very large, one would normally map the file, and then set pieces
of it by assigning to slices of the frame. See memmap_frame.

Parameters

data
[ndarray] Array holding complex or real data to be encoded.

header
[DADAHeader or None] If not given, will attempt to generate one using the keywords.

valid
[bool, optional] Whether the data are valid (default: True). Note that this information
cannot be written to disk.

verify
[bool, optional] Whether or not to do basic assertions that check the integrity. Default:
True.

**kwargs
If header is not given, these are used to initialize one.

classmethod fromfile(fh, memmap=True, valid=True, verify=True)
Read a frame from a filehandle, possible mapping the payload.

Parameters

8.3. Reference/API 245

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

fh
[filehandle] To read header from.

memmap
[bool, optional] If True (default), use memmap to map the payload. If False, just read it
from disk.

valid
[bool, optional] Whether the data are valid (default: True). Note that this cannot be in-
ferred from the header or payload itself. If False, any data read will be set to cls.
fill_value.

verify
[bool, optional] Whether to do basic verification of integrity. Default: True.

keys(self)

tofile(self, fh)
Write encoded frame to filehandle.

verify(self)
Simple verification. To be added to by subclasses.

Class Inheritance Diagram

DADAFrameVLBIFrameBase

8.3.5 baseband.dada.base Module

Functions

open(name[, mode]) Open DADA file(s) for reading or writing.

open

baseband.dada.base.open(name, mode='rs', **kwargs)
Open DADA file(s) for reading or writing.

Opened as a binary file, one gets a wrapped filehandle that adds methods to read/write a frame. Opened as a
stream, the handle is wrapped further, with methods such as reading and writing to the file as if it were a stream
of samples.

Parameters

name

246 Chapter 8. DADA

https://docs.python.org/3/library/constants.html#True
https://docs.scipy.org/doc/numpy/reference/generated/numpy.memmap.html#numpy.memmap
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

[str or filehandle, or sequence of str] File name, filehandle, or sequence of file names (see
Notes).

mode
[{‘rb’, ‘wb’, ‘rs’, or ‘ws’}, optional] Whether to open for reading or writing, and as a regular
binary file or as a stream. Default: ‘rs’, for reading a stream.

**kwargs
Additional arguments when opening the file as a stream.

— For reading a stream
[(see DADAStreamReader)]

squeeze
[bool, optional] If True (default), remove any dimensions of length unity from decoded data.

subset
[indexing object or tuple of objects, optional] Specific components of the complete sample
to decode (after possibly squeezing). If a single indexing object is passed, it selects polar-
izations. With a tuple, the first selects polarizations and the second selects channels. If the
tuple is empty (default), all components are read.

— For writing a stream
[(see DADAStreamWriter)]

header0
[DADAHeader] Header for the first frame, holding time information, etc. Can instead give
keyword arguments to construct a header (see **kwargs).

squeeze
[bool, optional] If True (default), writer accepts squeezed arrays as input, and adds any
dimensions of length unity.

**kwargs
If the header is not given, an attempt will be made to construct one with any further keyword
arguments.

— Header keywords
[(see fromvalues())]

time
[Time] Start time of the file.

samples_per_frame
[int,] Number of complete samples per frame.

sample_rate
[Quantity] Number of complete samples per second, i.e. the rate at which each channel of
each polarization is sampled.

offset
[Quantity or TimeDelta, optional] Time offset from the start of the whole observation
(default: 0).

npol
[int, optional] Number of polarizations (default: 1).

nchan
[int, optional] Number of channels (default: 1).

complex_data
[bool, optional] Whether data are complex (default: False).

8.3. Reference/API 247

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.TimeDelta.html#astropy.time.TimeDelta
https://docs.python.org/3/library/constants.html#False


baseband Documentation, Release 3.1.0

bps
[int, optional] Bits per elementary sample, i.e. per real or imaginary component for complex
data (default: 8).

Returns

Filehandle
DADAFileReader or DADAFileWriter (binary), or DADAStreamReader or
DADAStreamWriter (stream).

Notes

For streams, one can also pass to name a list of files, or a template string that can be formatted using ‘frame_nr’,
‘obs_offset’, and other header keywords (by DADAFileNameSequencer).

For writing, one can mimic what is done at quite a few telescopes by using the template
‘{utc_start}_{obs_offset:016d}.000000.dada’. Unlike for the VLBI openers, file_size is set to the size of
one frame as given by the header.

For reading, to read series such as the above, use something like ‘2013-07-02-
01:37:40_{obs_offset:016d}.000000.dada’. Note that here we have to pass in the date explicitly, since
the template is used to get the first file name, before any header is read, and therefore the only keywords
available are ‘frame_nr’, ‘file_nr’, and ‘obs_offset’, all of which are assumed to be zero for the first file. To
avoid this restriction, pass in keyword arguments with values appropriate for the first file.

One may also pass in a sequentialfile object (opened in ‘rb’ mode for reading or ‘w+b’ for writing), though
for typical use cases it is practically identical to passing in a list or template.

Classes

DADAFileNameSequencer(template[, header]) List-like generator of DADA filenames using a tem-
plate.

DADAFileReader(fh_raw) Simple reader for DADA files.
DADAFileWriter(fh_raw) Simple writer/mapper for DADA files.
DADAStreamBase(fh_raw, header0[, squeeze, . . . ]) Base for DADA streams.
DADAStreamReader(fh_raw[, squeeze, subset, . . . ]) DADA format reader.
DADAStreamWriter(fh_raw, header0[, squeeze]) DADA format writer.

DADAFileNameSequencer

class baseband.dada.base.DADAFileNameSequencer(template, header={})
Bases: baseband.helpers.sequentialfile.FileNameSequencer

List-like generator of DADA filenames using a template.

The template is formatted, filling in any items in curly brackets with values from the header, as well as pos-
sibly a file number equal to the indexing value, indicated with ‘{file_nr}’. The value ‘{obs_offset}’ is treated
specially, in being calculated using header['OBS_OFFSET'] + file_nr * header['FILE_SIZE'], where
header['FILE_SIZE'] is the file size in bytes.

The length of the instance will be the number of files that exist that match the template for increasing values of
the file number (when writing, it is the number of files that have so far been generated).

248 Chapter 8. DADA



baseband Documentation, Release 3.1.0

Parameters

template
[str] Template to format to get specific filenames. Curly bracket item keywords are not
case-sensitive.

header
[dict-like] Structure holding key’d values that are used to fill in the format. Keys must be in
all caps (eg. DATE), as with DADA header keys.

Examples

>>> from baseband import dada
>>> dfs = dada.base.DADAFileNameSequencer(
... '{date}_{file_nr:03d}.dada', {'DATE': "2018-01-01"})
>>> dfs[10]
'2018-01-01_010.dada'
>>> from baseband.data import SAMPLE_DADA
>>> with open(SAMPLE_DADA, 'rb') as fh:
... header = dada.DADAHeader.fromfile(fh)
>>> template = '{utc_start}.{obs_offset:016d}.000000.dada'
>>> dfs = dada.base.DADAFileNameSequencer(template, header)
>>> dfs[0]
'2013-07-02-01:37:40.0000006400000000.000000.dada'
>>> dfs[1]
'2013-07-02-01:37:40.0000006400064000.000000.dada'
>>> dfs[10]
'2013-07-02-01:37:40.0000006400640000.000000.dada'

DADAFileReader

class baseband.dada.base.DADAFileReader(fh_raw)
Bases: baseband.vlbi_base.base.VLBIFileReaderBase

Simple reader for DADA files.

Wraps a binary filehandle, providing methods to help interpret the data, such as read_frame and
get_frame_rate. By default, frame payloads are mapped rather than fully read into physical memory.

Parameters

fh_raw
[filehandle] Filehandle of the raw binary data file.

8.3. Reference/API 249



baseband Documentation, Release 3.1.0

Attributes Summary

info() Standardized information on file readers.

Methods Summary

close(self)
find_header(self, \*args, \*\*kwargs) Find the nearest header from the current position.
get_frame_rate(self) Determine the number of frames per second.
locate_frames(self, pattern, \*[, mask, . . . ]) Use a pattern to locate frame starts near the current

position.
read_frame(self[, memmap, verify]) Read the frame header and read or map the corre-

sponding payload.
read_header(self) Read a single header from the file.
temporary_offset(self) Context manager for temporarily seeking to another

file position.

Attributes Documentation

info
Standardized information on file readers.

The info descriptor has a number of standard attributes, which are determined from arguments passed in
opening the file, from the first header (info.header0) and from possibly scanning the file to determine
the duration of frames.

Examples

The most common use is simply to print information:

>>> from baseband.data import SAMPLE_MARK5B
>>> from baseband import mark5b
>>> fh = mark5b.open(SAMPLE_MARK5B, 'rb')
>>> fh.info
File information:
format = mark5b
number_of_frames = 4
frame_rate = 6400.0 Hz
bps = 2
complex_data = False
readable = False

missing: nchan: needed to determine sample shape, frame rate, ...
kday, ref_time: needed to infer full times.

>>> fh.close()

>>> fh = mark5b.open(SAMPLE_MARK5B, 'rb', kday=56000, nchan=8)
>>> fh.info
File information:
format = mark5b

(continues on next page)

250 Chapter 8. DADA



baseband Documentation, Release 3.1.0

(continued from previous page)

number_of_frames = 4
frame_rate = 6400.0 Hz
sample_rate = 32.0 MHz
samples_per_frame = 5000
sample_shape = (8,)
bps = 2
complex_data = False
start_time = 2014-06-13T05:30:01.000000000
readable = True

checks: decodable: True
>>> fh.close()

Attributes

format
[str or None] File format, or None if the underlying file cannot be parsed.

number_of_frames
[int] Number of frames in the file.

frame_rate
[Quantity] Number of data frames per unit of time.

sample_rate
[Quantity] Complete samples per unit of time.

samples_per_frame
[int] Number of complete samples in each frame.

sample_shape
[tuple] Dimensions of each complete sample (e.g., (nchan,)).

bps
[int] Number of bits used to encode each elementary sample.

complex_data
[bool] Whether the data are complex.

start_time
[Time] Time of the first complete sample.

readable
[bool] Whether the first sample could be read and decoded.

missing
[dict] Entries are keyed by names of arguments that should be passed to the file reader to
obtain full information. The associated entries explain why these arguments are needed.

checks
[dict] Checks that were done to determine whether the file was readable (normally the only
entry is ‘decodable’).

errors
[dict] Any exceptions raised while trying to determine attributes or doing checks. Keyed
by the attributes/checks.

8.3. Reference/API 251

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time


baseband Documentation, Release 3.1.0

warnings
[dict] Any warnings about the attributes or about the checks. Keyed by the at-
tributes/checks.

Methods Documentation

close(self)

find_header(self, *args, **kwargs)
Find the nearest header from the current position.

If successful, the file pointer is left at the start of the header.

Parameters are as for locate_frames.

Returns

header
Retrieved header.

Raises

~baseband.vlbi_base.base.HeaderNotFoundError
If no header could be located.

AssertionError
If the header did not pass verification.

get_frame_rate(self)
Determine the number of frames per second.

The routine uses the sample rate and number of samples per frame from the first header in the file.

Returns

frame_rate
[Quantity] Frames per second.

locate_frames(self, pattern, *, mask=None, frame_nbytes=None, offset=0, forward=True, maxi-
mum=None, check=1)

Use a pattern to locate frame starts near the current position.

Note that the current position is always included.

Parameters

pattern
[header, ~numpy.ndaray, bytes, int, or iterable of int] Synchronization pattern to look for.
If a header or header class, invariant_pattern() is used to create a masked pattern,
using invariant keys from invariants(). If an ndarray or bytes instance, a byte array
view is taken. If an (iterable of) int, the integers need to be unsigned 32 bit and will be
interpreted as little-endian.

mask
[~numpy.ndarray, bytes, int, or iterable of int.] Bit mask for the pattern, with 1 indicating
a given bit will be used the comparison.

252 Chapter 8. DADA

http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#bytes


baseband Documentation, Release 3.1.0

frame_nbytes
[int, optional] Frame size in bytes. Defaults to the frame size in any header passed in.

offset
[int, optional] Offset from the frame start that the pattern occurs. Any offsets inferred from
masked entries are added to this (hence, no offset needed when a header is passed in as
pattern).

forward
[bool, optional] Seek forward if True (default), backward if False.

maximum
[int, optional] Maximum number of bytes to search away from the present location. De-
fault: search twice the frame size if given, otherwise 1 million (extra bytes to avoid partial
patterns will be added). Use 0 to check only at the current position.

check
[int or tuple of int, optional] Frame offsets where another sync pattern should be present
(if inside the file). Ignored if frame_nbytes is not given. Default: 1, i.e., a sync pattern
should be present one frame after the one found (independent of forward), thus helping
to guarantee the frame is not corrupted.

Returns

locations
[list of int] Locations of sync patterns within the range scanned, in order of proximity to
the starting position.

read_frame(self, memmap=True, verify=True)
Read the frame header and read or map the corresponding payload.

Parameters

memmap
[bool, optional] If True (default), map the payload using memmap, so that parts are only
loaded into memory as needed to access data.

verify
[bool, optional] Whether to do basic checks of frame integrity. Default: True.

Returns

frame
[DADAFrame] With .header and .payload properties. The .data property returns all data
encoded in the frame. Since this may be too large to fit in memory, it may be better to
access the parts of interest by slicing the frame.

read_header(self)
Read a single header from the file.

Returns

header
[DADAHeader]

temporary_offset(self)
Context manager for temporarily seeking to another file position.

8.3. Reference/API 253

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.scipy.org/doc/numpy/reference/generated/numpy.memmap.html#numpy.memmap
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

To be used as part of a with statement:

with fh_raw.temporary_offset() [as fh_raw]:
with-block

On exiting the with-block, the file pointer is moved back to its original position.

DADAFileWriter

class baseband.dada.base.DADAFileWriter(fh_raw)
Bases: baseband.vlbi_base.base.VLBIFileBase

Simple writer/mapper for DADA files.

Adds write_frame and memmap_frame methods to the VLBI binary file wrapper. The latter allows one to
encode data in pieces, writing to disk as needed.

Methods Summary

close(self)
memmap_frame(self[, header]) Get frame by writing the header to disk and mapping

its payload.
temporary_offset(self) Context manager for temporarily seeking to another

file position.
write_frame(self, data[, header]) Write a single frame (header plus payload).

Methods Documentation

close(self)

memmap_frame(self, header=None, **kwargs)
Get frame by writing the header to disk and mapping its payload.

The header is written to disk immediately, but the payload is mapped, so that it can be filled in pieces, by
setting slices of the frame.

Parameters

header
[DADAHeader] Written to disk immediately. Can instead give keyword arguments to con-
struct a header.

**kwargs
If header is not given, these are used to initialize one.

Returns

frame: DADAFrame
By assigning slices to data, the payload can be encoded piecewise.

temporary_offset(self)
Context manager for temporarily seeking to another file position.

254 Chapter 8. DADA



baseband Documentation, Release 3.1.0

To be used as part of a with statement:

with fh_raw.temporary_offset() [as fh_raw]:
with-block

On exiting the with-block, the file pointer is moved back to its original position.

write_frame(self, data, header=None, **kwargs)
Write a single frame (header plus payload).

Parameters

data
[ndarray or DADAFrame] If an array, a header should be given, which will be used to get
the information needed to encode the array, and to construct the DADA frame.

header
[DADAHeader] Can instead give keyword arguments to construct a header. Ignored if data
is a DADAFrame instance.

**kwargs
If header is not given, these are used to initialize one.

DADAStreamBase

class baseband.dada.base.DADAStreamBase(fh_raw, header0, squeeze=True, subset=(), verify=True)
Bases: baseband.vlbi_base.base.VLBIStreamBase

Base for DADA streams.

Attributes Summary

bps Bits per elementary sample.
complex_data Whether the data are complex.
header0 First header of the file.
sample_rate Number of complete samples per second.
sample_shape Shape of a complete sample (possibly subset or

squeezed).
samples_per_frame Number of complete samples per frame.
squeeze Whether data arrays have dimensions with length

unity removed.
start_time Start time of the file.
subset Specific components of the complete sample to de-

code.
time Time of the sample pointer’s current offset in file.
verify Whether to do consistency checks on frames being

read.

8.3. Reference/API 255

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


baseband Documentation, Release 3.1.0

Methods Summary

close(self)
tell(self[, unit]) Current offset in the file.

Attributes Documentation

bps
Bits per elementary sample.

complex_data
Whether the data are complex.

header0
First header of the file.

sample_rate
Number of complete samples per second.

sample_shape
Shape of a complete sample (possibly subset or squeezed).

samples_per_frame
Number of complete samples per frame.

squeeze
Whether data arrays have dimensions with length unity removed.

If True, data read out has such dimensions removed, and data passed in for writing has them inserted.

start_time
Start time of the file.

See also time for the time of the sample pointer’s current offset.

subset
Specific components of the complete sample to decode.

The order of dimensions is the same as for sample_shape. Set by the class initializer.

time
Time of the sample pointer’s current offset in file.

See also start_time for the start time of the file.

verify
Whether to do consistency checks on frames being read.

Methods Documentation

close(self)

tell(self, unit=None)
Current offset in the file.

Parameters

256 Chapter 8. DADA

https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

unit
[Unit or str, optional] Time unit the offset should be returned in. By default, no unit is
used, i.e., an integer enumerating samples is returned. For the special string ‘time’, the
absolute time is calculated.

Returns

offset
[int, Quantity, or Time] Offset in current file (or time at current position).

DADAStreamReader

class baseband.dada.base.DADAStreamReader(fh_raw, squeeze=True, subset=(), verify=True)
Bases: baseband.dada.base.DADAStreamBase, baseband.vlbi_base.base.VLBIStreamReaderBase

DADA format reader.

Allows access to DADA files as a continuous series of samples.

Parameters

fh_raw
[filehandle] Filehandle of the raw DADA stream.

squeeze
[bool, optional] If True (default), remove any dimensions of length unity from decoded data.

subset
[indexing object or tuple of objects, optional] Specific components of the complete sample
to decode (after possibly squeezing). If a single indexing object is passed, it selects polar-
izations. With a tuple, the first selects polarizations and the second selects channels. If the
tuple is empty (default), all components are read.

verify
[bool, optional] Whether to do basic checks of frame integrity when reading. The first frame
of the stream is always checked, so verify is effective only when reading sequences of files.
Default: True.

Attributes Summary

bps Bits per elementary sample.
complex_data Whether the data are complex.
dtype
fill_value Value to use for invalid or missing data.
header0 First header of the file.
info() Standardized information on stream readers.
ndim Number of dimensions of the (squeezed/subset)

stream data.
sample_rate Number of complete samples per second.
sample_shape Shape of a complete sample (possibly subset or

squeezed).
samples_per_frame Number of complete samples per frame.
shape Shape of the (squeezed/subset) stream data.

Continued on next page

8.3. Reference/API 257

http://docs.astropy.org/en/stable/api/astropy.units.Unit.html#astropy.units.Unit
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Table 26 – continued from previous page
size Total number of component samples in the

(squeezed/subset) stream data.
squeeze Whether data arrays have dimensions with length

unity removed.
start_time Start time of the file.
stop_time Time at the end of the file, just after the last sample.
subset Specific components of the complete sample to de-

code.
time Time of the sample pointer’s current offset in file.
verify Whether to do consistency checks on frames being

read.

Methods Summary

close(self)
read(self[, count, out]) Read a number of complete (or subset) samples.
readable(self) Whether the file can be read and decoded.
seek(self, offset[, whence]) Change the stream position.
tell(self[, unit]) Current offset in the file.

Attributes Documentation

bps
Bits per elementary sample.

complex_data
Whether the data are complex.

dtype

fill_value
Value to use for invalid or missing data. Default: 0.

header0
First header of the file.

info
Standardized information on stream readers.

The info descriptor provides a few standard attributes, most of which can also be accessed directly on the
stream filehandle, and tests basic readability of the stream. More detailed information on the underlying
file is stored in its info, accessible via info.file_info (and shown by __repr__).

Attributes

start_time
[Time] Time of the first complete sample.

stop_time
[Time] Time of the complete sample just beyond the end of the file.

sample_rate
[Quantity] Complete samples per unit of time.

258 Chapter 8. DADA

http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity


baseband Documentation, Release 3.1.0

shape
[tuple] Equivalent shape of the whole file, i.e., combining the number of complete samples
and the shape of those samples.

bps
[int] Number of bits used to encode each elementary sample.

complex_data
[bool] Whether the data are complex.

verify
[bool or str] The type of verification done by the stream reader.

readable
[bool] Whether the first and last samples could be read and decoded.

checks
[dict] Checks that were done to determine whether the file was readable (normally ‘con-
tinuous’ and ‘decodable’).

errors
[dict] Any exceptions raised while trying to determine attributes or doing checks. Keyed
by the attributes/checks.

warnings
[dict] Any warnings about the attributes or about the checks. Keyed by the at-
tributes/checks.

ndim
Number of dimensions of the (squeezed/subset) stream data.

sample_rate
Number of complete samples per second.

sample_shape
Shape of a complete sample (possibly subset or squeezed).

samples_per_frame
Number of complete samples per frame.

shape
Shape of the (squeezed/subset) stream data.

size
Total number of component samples in the (squeezed/subset) stream data.

squeeze
Whether data arrays have dimensions with length unity removed.

If True, data read out has such dimensions removed, and data passed in for writing has them inserted.

start_time
Start time of the file.

See also time for the time of the sample pointer’s current offset, and (if available) stop_time for the time
at the end of the file.

stop_time
Time at the end of the file, just after the last sample.

See also start_time for the start time of the file, and time for the time of the sample pointer’s current
offset.

8.3. Reference/API 259

https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

subset
Specific components of the complete sample to decode.

The order of dimensions is the same as for sample_shape. Set by the class initializer.

time
Time of the sample pointer’s current offset in file.

See also start_time for the start time, and (if available) stop_time for the end time, of the file.

verify
Whether to do consistency checks on frames being read.

Methods Documentation

close(self)

read(self, count=None, out=None)
Read a number of complete (or subset) samples.

The range retrieved can span multiple frames.

Parameters

count
[int or None, optional] Number of complete/subset samples to read. If None (default) or
negative, the whole file is read. Ignored if out is given.

out
[None or array, optional] Array to store the data in. If given, count will be inferred from
the first dimension; the other dimension should equal sample_shape.

Returns

out
[ndarray of float or complex] The first dimension is sample-time, and the remainder given
by sample_shape.

readable(self)
Whether the file can be read and decoded.

seek(self, offset, whence=0)
Change the stream position.

This works like a normal filehandle seek, but the offset is in samples (or a relative or absolute time).

Parameters

offset
[int, Quantity, or Time] Offset to move to. Can be an (integer) number of samples, an
offset in time units, or an absolute time.

whence
[{0, 1, 2, ‘start’, ‘current’, or ‘end’}, optional] Like regular seek, the offset is taken to be
from the start if whence=0 (default), from the current position if 1, and from the end if 2.
One can alternativey use ‘start’, ‘current’, or ‘end’ for 0, 1, or 2, respectively. Ignored if
offset is a time.

260 Chapter 8. DADA

https://docs.python.org/3/library/constants.html#None
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time


baseband Documentation, Release 3.1.0

tell(self, unit=None)
Current offset in the file.

Parameters

unit
[Unit or str, optional] Time unit the offset should be returned in. By default, no unit is
used, i.e., an integer enumerating samples is returned. For the special string ‘time’, the
absolute time is calculated.

Returns

offset
[int, Quantity, or Time] Offset in current file (or time at current position).

DADAStreamWriter

class baseband.dada.base.DADAStreamWriter(fh_raw, header0, squeeze=True)
Bases: baseband.dada.base.DADAStreamBase, baseband.vlbi_base.base.VLBIStreamWriterBase

DADA format writer.

Encodes and writes sequences of samples to file.

Parameters

raw
[filehandle] For writing the header and raw data to storage.

header0
[DADAHeader] Header for the first frame, holding time information, etc.

squeeze
[bool, optional] If True (default), write accepts squeezed arrays as input, and adds any
dimensions of length unity.

Attributes Summary

bps Bits per elementary sample.
complex_data Whether the data are complex.
header0 First header of the file.
sample_rate Number of complete samples per second.
sample_shape Shape of a complete sample (possibly subset or

squeezed).
samples_per_frame Number of complete samples per frame.
squeeze Whether data arrays have dimensions with length

unity removed.
start_time Start time of the file.
subset Specific components of the complete sample to de-

code.
time Time of the sample pointer’s current offset in file.

Continued on next page

8.3. Reference/API 261

http://docs.astropy.org/en/stable/api/astropy.units.Unit.html#astropy.units.Unit
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Table 28 – continued from previous page
verify Whether to do consistency checks on frames being

read.

Methods Summary

close(self)
tell(self[, unit]) Current offset in the file.
write(self, data[, valid]) Write data, buffering by frames as needed.

Attributes Documentation

bps
Bits per elementary sample.

complex_data
Whether the data are complex.

header0
First header of the file.

sample_rate
Number of complete samples per second.

sample_shape
Shape of a complete sample (possibly subset or squeezed).

samples_per_frame
Number of complete samples per frame.

squeeze
Whether data arrays have dimensions with length unity removed.

If True, data read out has such dimensions removed, and data passed in for writing has them inserted.

start_time
Start time of the file.

See also time for the time of the sample pointer’s current offset.

subset
Specific components of the complete sample to decode.

The order of dimensions is the same as for sample_shape. Set by the class initializer.

time
Time of the sample pointer’s current offset in file.

See also start_time for the start time of the file.

verify
Whether to do consistency checks on frames being read.

262 Chapter 8. DADA

https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Methods Documentation

close(self)

tell(self, unit=None)
Current offset in the file.

Parameters

unit
[Unit or str, optional] Time unit the offset should be returned in. By default, no unit is
used, i.e., an integer enumerating samples is returned. For the special string ‘time’, the
absolute time is calculated.

Returns

offset
[int, Quantity, or Time] Offset in current file (or time at current position).

write(self, data, valid=True)
Write data, buffering by frames as needed.

Parameters

data
[ndarray] Piece of data to be written, with sample dimensions as given by sample_shape.
This should be properly scaled to make best use of the dynamic range delivered by the
encoding.

valid
[bool, optional] Whether the current data are valid. Default: True.

8.3. Reference/API 263

http://docs.astropy.org/en/stable/api/astropy.units.Unit.html#astropy.units.Unit
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Class Inheritance Diagram

DADAFileNameSequencerFileNameSequencer

DADAFileReaderVLBIFileReaderBase

DADAFileWriter
VLBIFileBase

DADAStreamBase

DADAStreamReader

DADAStreamWriter

VLBIStreamBase

VLBIStreamReaderBase

VLBIStreamWriterBase

264 Chapter 8. DADA



CHAPTER

NINE

GUPPI

The GUPPI format is the output of the Green Bank Ultimate Pulsar Processing Instrument and any clones operating
at other telescopes, such as PUPPI at the Arecibo Observatory. Baseband specifically supports GUPPI data taken in
baseband mode, and is based off of DSPSR’s implementation. While general format specifications can be found on
Paul Demorest’s site, some of the header information could be invalid or not applicable, particularly with older files.

Baseband currently only supports 8-bit elementary samples.

9.1 File Structure

Each GUPPI file contains multiple (typically 128) frames, with each frame consisting of an ASCII header composed
of 80-character entries, followed by a binary payload (or “block”). The header’s length is variable, but always ends
with “END” followed by 77 spaces.

How samples are stored in the payload depends on whether or not it is channels-first. A channels-first payload stores
each channel’s stream in a contiguous data block, while a non-channels-first one groups the components of a complete
sample together (like with other formats). In either case, for each channel polarization samples from the same point
in time are stored adjacent to one another. At the end of each channel’s data is a section of overlap samples identical
to the first samples in the next payload. Baseband retains these redundant samples when reading individual GUPPI
frames, but removes them when reading files as a stream.

9.2 Usage

This section covers reading and writing GUPPI files with Baseband; general usage is covered in the Using Baseband
section. For situations in which one is unsure of a file’s format, Baseband features the general baseband.open and
baseband.file_info functions, which are also discussed in Using Baseband. The examples below use the sample
PUPPI file baseband/data/sample_puppi.raw, and the the astropy.units and baseband.guppi modules:

>>> from baseband import guppi
>>> import astropy.units as u
>>> from baseband.data import SAMPLE_PUPPI

Single files can be opened with open in binary mode, which provides a normal file reader, but extended with methods
to read a GUPPIFrame:

>>> fb = guppi.open(SAMPLE_PUPPI, 'rb')
>>> frame = fb.read_frame()
>>> frame.shape
(1024, 2, 4)
>>> frame[:3, 0, 1]

(continues on next page)

265

https://safe.nrao.edu/wiki/bin/view/CICADA/NGNPP
https://www.naic.edu/puppi-observing/
https://github.com/demorest/dspsr
https://www.cv.nrao.edu/~pdemores/GUPPI_Raw_Data_Format
http://docs.astropy.org/en/stable/units/index.html#module-astropy.units


baseband Documentation, Release 3.1.0

(continued from previous page)

array([-32.-10.j, -15.-14.j, 9.-13.j], dtype=complex64)
>>> fb.close()

Since the files can be quite large, the payload is mapped (with numpy.memmap), so that if one accesses part of the data,
only the corresponding parts of the encoded payload are loaded into memory (since the sample file is encoded using 8
bits, the above example thus loads 6 bytes into memory).

Opening in stream mode wraps the low-level routines such that reading and writing is in units of samples, and provides
access to header information:

>>> fh = guppi.open(SAMPLE_PUPPI, 'rs')
>>> fh
<GUPPIStreamReader name=... offset=0

sample_rate=250.0 Hz, samples_per_frame=960,
sample_shape=SampleShape(npol=2, nchan=4), bps=8,
start_time=2018-01-14T14:11:33.000>

>>> d = fh.read()
>>> d.shape
(3840, 2, 4)
>>> d[:3, 0, 1]
array([-32.-10.j, -15.-14.j, 9.-13.j], dtype=complex64)
>>> fh.close()

Note that fh.samples_per_frame represents the number of samples per frame excluding overlap samples, since the
stream reader works on a linearly increasing sequence of samples. Frames themselves have access to the overlap, and
fh.header0.samples_per_frame returns the number of samples per frame including overlap.

To set up a file for writing as a stream is possible as well. Overlap must be zero when writing (so we set
samples_per_frame to its stream reader value from above):

>>> from astropy.time import Time
>>> fw = guppi.open('puppi_test.{file_nr:04d}.raw', 'ws',
... frames_per_file=2, sample_rate=250*u.Hz,
... samples_per_frame=960, pktsize=1024,
... time=Time(58132.59135416667, format='mjd'),
... npol=2, nchan=4)
>>> fw.write(d)
>>> fw.close()
>>> fr = guppi.open('puppi_test.{file_nr:04d}.raw', 'rs')
>>> d2 = fr.read()
>>> (d == d2).all()
True
>>> fr.close()

Here we show how to write a sequence of files by passing a string template to open, which prompts it to create and
use a filename sequencer generated with GUPPIFileNameSequencer. One may also pass a time-ordered list or tuple of
filenames to open. Unlike when writing DADA files, which have one frame per file, we specify the number of frames
in one file using``frames_per_file``. Note that typically one does not have to pass PKTSIZE, the UDP data packet size
(set by the observing mode), but the sample file has small enough frames that the default of 8192 bytes is too large.
Baseband only uses PKTSIZE to double-check the sample offset of the frame, so PKTSIZE must be set to a value such
that each payload, excluding overlap samples, contains an integer number of packets. (See API links for further details
on how to read and write file sequences.)

266 Chapter 9. GUPPI

https://docs.scipy.org/doc/numpy/reference/generated/numpy.memmap.html#numpy.memmap


baseband Documentation, Release 3.1.0

9.3 Reference/API

9.3.1 baseband.guppi Package

Green Bank Ultimate Pulsar Processing Instrument (GUPPI) format reader/writer.

Functions

open(name[, mode]) Open GUPPI file(s) for reading or writing.

open

baseband.guppi.open(name, mode='rs', **kwargs)
Open GUPPI file(s) for reading or writing.

Opened as a binary file, one gets a wrapped filehandle that adds methods to read/write a frame. Opened as a
stream, the handle is wrapped further, with methods such as reading and writing to the file as if it were a stream
of samples.

Parameters

name
[str or filehandle, or sequence of str] File name, filehandle, or sequence of file names (see
Notes).

mode
[{‘rb’, ‘wb’, ‘rs’, or ‘ws’}, optional] Whether to open for reading or writing, and as a regular
binary file or as a stream. Default: ‘rs’, for reading a stream.

**kwargs
Additional arguments when opening the file as a stream.

— For reading a stream
[(see GUPPIStreamReader)]

squeeze
[bool, optional] If True (default), remove any dimensions of length unity from decoded data.

subset
[indexing object or tuple of objects, optional] Specific components of the complete sample
to decode (after possibly squeezing). If a single indexing object is passed, it selects polar-
izations. With a tuple, the first selects polarizations and the second selects channels. If the
tuple is empty (default), all components are read.

— For writing a stream
[(see GUPPIStreamWriter)]

header0
[GUPPIHeader] Header for the first frame, holding time information, etc. Can instead give
keyword arguments to construct a header (see **kwargs).

squeeze
[bool, optional] If True (default), writer accepts squeezed arrays as input, and adds any
dimensions of length unity.

9.3. Reference/API 267

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

frames_per_file
[int, optional] When writing to a sequence of files, sets the number of frames within each
file. Default: 128.

**kwargs
If the header is not given, an attempt will be made to construct one with any further keyword
arguments.

— Header keywords
[(see fromvalues())]

time
[Time] Start time of the file. Must have an integer number of seconds.

sample_rate
[Quantity] Number of complete samples per second, i.e. the rate at which each channel of
each polarization is sampled.

samples_per_frame
[int] Number of complete samples per frame. Can alternatively give payload_nbytes.

payload_nbytes
[int] Number of bytes per payload. Can alternatively give samples_per_frame.

offset
[Quantity or TimeDelta, optional] Time offset from the start of the whole observation
(default: 0).

npol
[int, optional] Number of polarizations (default: 1).

nchan
[int, optional] Number of channels (default: 1). For GUPPI, complex data is only allowed
when nchan > 1.

bps
[int, optional] Bits per elementary sample, i.e. per real or imaginary component for complex
data (default: 8).

Returns

Filehandle
GUPPIFileReader or GUPPIFileWriter (binary), or GUPPIStreamReader or
GUPPIStreamWriter (stream).

Notes

For streams, one can also pass to name a list of files, or a template string that can be formatted using ‘stt_imjd’,
‘src_name’, and other header keywords (by GUPPIFileNameSequencer).

For writing, one can mimic, for example, what is done at Arecibo by using the template
‘puppi_{stt_imjd}_{src_name}_{scannum}.{file_nr:04d}.raw’. GUPPI typically has 128 frames per file; to
change this, use the frames_per_file keyword. file_size is set by frames_per_file and cannot be passed.

For reading, to read series such as the above, you will need to use something like
‘puppi_58132_J1810+1744_2176.{file_nr:04d}.raw’. Here we have to pass in the MJD, source name
and scan number explicitly, since the template is used to get the first file name, before any header is read, and
therefore the only keyword available is ‘file_nr’, which is assumed to be zero for the first file. To avoid this
restriction, pass in keyword arguments with values appropriate for the first file.

268 Chapter 9. GUPPI

http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.TimeDelta.html#astropy.time.TimeDelta


baseband Documentation, Release 3.1.0

One may also pass in a sequentialfile object (opened in ‘rb’ mode for reading or ‘w+b’ for writing), though
for typical use cases it is practically identical to passing in a list or template.

Classes

GUPPIFrame(header, payload[, valid, verify]) Representation of a GUPPI file, consisting of a header
and payload.

GUPPIHeader(*args[, verify, mutable]) GUPPI baseband file format header.
GUPPIPayload(words[, header, sample_shape, . . . ]) Container for decoding and encoding GUPPI payloads.

GUPPIFrame

class baseband.guppi.GUPPIFrame(header, payload, valid=True, verify=True)
Bases: baseband.vlbi_base.frame.VLBIFrameBase

Representation of a GUPPI file, consisting of a header and payload.

Parameters

header
[GUPPIHeader] Wrapper around the header lines, providing access to the values.

payload
[GUPPIPayload] Wrapper around the payload, provding mechanisms to decode it.

valid
[bool, optional] Whether the data are valid. Default: True.

verify
[bool, optional] Whether to do basic verification of integrity. Default: True.

Notes

GUPPI files do not support storing whether data are valid or not on disk. Hence, this has to be determined
independently. If valid=False, any decoded data are set to cls.fill_value (by default, 0).

The Frame can also be instantiated using class methods:

fromfile : read header and and map or read payload from a filehandle

fromdata : encode data as payload

Of course, one can also do the opposite:

tofile : method to write header and payload to filehandle

data : property that yields full decoded payload

One can decode part of the payload by indexing or slicing the frame.

A number of properties are defined: shape, dtype and size are the shape, type and number of complete samples
of the data array, and nbytes the frame size in bytes. Furthermore, the frame acts as a dictionary, with keys
those of the header. Any attribute that is not defined on the frame itself, such as .time will be looked up on the
header as well.

9.3. Reference/API 269

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Attributes Summary

data Full decoded frame.
dtype Numeric type of the frame data.
fill_value Value to replace invalid data in the frame.
nbytes Size of the encoded frame in bytes.
ndim Number of dimensions of the frame data.
sample_shape Shape of a sample in the frame (nchan,).
shape Shape of the frame data.
size Total number of component samples in the frame

data.
valid Whether frame contains valid data.

Methods Summary

fromdata(data[, header, valid, verify]) Construct frame from data and header.
fromfile(fh[, memmap, valid, verify]) Read a frame from a filehandle, possible mapping the

payload.
keys(self)
tofile(self, fh) Write encoded frame to filehandle.
verify(self) Simple verification.

Attributes Documentation

data
Full decoded frame.

dtype
Numeric type of the frame data.

fill_value
Value to replace invalid data in the frame.

nbytes
Size of the encoded frame in bytes.

ndim
Number of dimensions of the frame data.

sample_shape
Shape of a sample in the frame (nchan,).

shape
Shape of the frame data.

size
Total number of component samples in the frame data.

valid
Whether frame contains valid data.

270 Chapter 9. GUPPI



baseband Documentation, Release 3.1.0

Methods Documentation

classmethod fromdata(data, header=None, valid=True, verify=True, **kwargs)
Construct frame from data and header.

Note that since GUPPI files are generally very large, one would normally map the file, and then set pieces
of it by assigning to slices of the frame. See memmap_frame.

Parameters

data
[ndarray] Array holding complex or real data to be encoded.

header
[GUPPIHeader or None, optional] If not given, will attempt to generate one using the
keywords.

valid
[bool, optional] Whether the data are valid (default: True). Note that this information
cannot be written to disk.

verify
[bool, optional] Whether or not to do basic assertions that check the integrity. Default:
True.

**kwargs
If header is not given, these are used to initialize one.

classmethod fromfile(fh, memmap=True, valid=True, verify=True)
Read a frame from a filehandle, possible mapping the payload.

Parameters

fh
[filehandle] To read header from.

memmap
[bool, optional] If True (default), use memmap to map the payload. If False, just read it
from disk.

valid
[bool, optional] Whether the data are valid (default: True). Note that this cannot be in-
ferred from the header or payload itself. If False, any data read will be set to cls.
fill_value.

verify
[bool, optional] Whether to do basic verification of integrity. Default: True.

keys(self)

tofile(self, fh)
Write encoded frame to filehandle.

verify(self)
Simple verification. To be added to by subclasses.

9.3. Reference/API 271

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.scipy.org/doc/numpy/reference/generated/numpy.memmap.html#numpy.memmap
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

GUPPIHeader

class baseband.guppi.GUPPIHeader(*args, verify=True, mutable=True, **kwargs)
Bases: astropy.io.fits.Header

GUPPI baseband file format header.

Parameters

*args
[str or iterable] If a string, parsed as a GUPPI header from a file, otherwise as for the
astropy.io.fits.Header baseclass.

verify
[bool, optional] Whether to do minimal verification that the header is consistent with the
GUPPI standard. Default: True.

mutable
[bool, optional] Whether to allow the header to be changed after initialisation. Default:
True.

**kwargs
Any further header keywords to be set.

Notes

Like Header, the initialiser does not accept keyword arguments to populate an array - instead, one must pass an
iterable. In order to ensure keywords are kept in the right order, one should pass on values as a tuple, not as a
dict. E.g., to copy a header, one should not do GUPPIHeader({key: header[key] for key in header}),
but rather:

GUPPIHeader(((key, header[key]) for key in header))

or, to also keep the comments:

GUPPIHeader(((key, (header[key], header.comments[key]))
for key in header))

Construct a Header from an iterable and/or text file.

Parameters

cards
[A list of Card objects, optional] The cards to initialize the header with. Also allowed are
other Header (or dict-like) objects.

Changed in version 1.2: Allowed cards to be a dict-like object.

copy
[bool, optional] If True copies the cards if they were another Header instance. Default is
False.

New in version 1.3.

272 Chapter 9. GUPPI

http://docs.astropy.org/en/stable/io/fits/api/headers.html#astropy.io.fits.Header
http://docs.astropy.org/en/stable/io/fits/api/headers.html#astropy.io.fits.Header
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
http://docs.astropy.org/en/stable/io/fits/api/headers.html#astropy.io.fits.Header
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict


baseband Documentation, Release 3.1.0

Attributes Summary

bps Bits per elementary sample.
cards The underlying physical cards that make up this

Header; it can be looked at, but it should not be mod-
ified directly.

channels_first True if encoded payload ordering is (nchan, nsample,
npol).

comments View the comments associated with each keyword, if
any.

complex_data Whether the data are complex.
frame_nbytes Size of the frame in bytes.
nbytes Size of the header in bytes.
nchan Number of channels.
npol Number of polarisations.
offset Offset from start of observation in units of time.
overlap Number of complete samples that overlap with the

next frame.
payload_nbytes Size of the payload in bytes.
sample_rate Number of complete samples per second.
sample_shape Shape of a sample in the payload (npol, nchan).
samples_per_frame Number of complete samples in the frame, including

overlap.
sideband True if upper sideband.
start_time Start time of the observation.
time Start time of the part of the observation covered by

this header.

Methods Summary

add_blank(self[, value, before, after]) Add a blank card.
add_comment(self, value[, before, after]) Add a COMMENT card.
add_history(self, value[, before, after]) Add a HISTORY card.
append(self[, card, useblanks, bottom, end]) Appends a new keyword+value card to the end of the

Header, similar to list.append.
clear(self) Remove all cards from the header.
copy(self) Create a mutable and independent copy of the header.
count(self, keyword) Returns the count of the given keyword in the header,

similar to list.count if the Header object is treated
as a list of keywords.

extend(self, cards[, strip, unique, update, . . . ]) Appends multiple keyword+value cards to the end of
the header, similar to list.extend.

fromfile(fh[, verify]) Reads in GUPPI header block from a file.
fromkeys(\*args[, verify, mutable]) Initialise a header from keyword values.
fromstring(data[, sep]) Creates an HDU header from a byte string containing

the entire header data.
fromtextfile(fileobj[, endcard]) Read a header from a simple text file or file-like ob-

ject.
fromvalues(\*\*kwargs) Initialise a header from parsed values.

Continued on next page

9.3. Reference/API 273



baseband Documentation, Release 3.1.0

Table 6 – continued from previous page
get(self, key[, default]) Similar to dict.get()–returns the value associated

with keyword in the header, or a default value if the
keyword is not found.

index(self, keyword[, start, stop]) Returns the index if the first instance of the given
keyword in the header, similar to list.index if the
Header object is treated as a list of keywords.

insert(self, key, card[, useblanks, after]) Inserts a new keyword+value card into the Header at
a given location, similar to list.insert.

items(self) Like dict.items().
keys(self) Like dict.keys()–iterating directly over the

Header instance has the same behavior.
pop(self, \*args) Works like list.pop() if no arguments or an index

argument are supplied; otherwise works like dict.
pop().

popitem(self) Similar to dict.popitem().
remove(self, keyword[, ignore_missing, . . . ]) Removes the first instance of the given keyword from

the header similar to list.remove if the Header ob-
ject is treated as a list of keywords.

rename_keyword(self, oldkeyword, newkeyword) Rename a card’s keyword in the header.
set(self, keyword[, value, comment, before, . . . ]) Set the value and/or comment and/or position of a

specified keyword.
setdefault(self, key[, default]) Similar to dict.setdefault().
tofile(self, fh) Write GUPPI file header to filehandle.
tostring(self[, sep, endcard, padding]) Returns a string representation of the header.
totextfile(self, fileobj[, endcard, overwrite]) Write the header as text to a file or a file-like object.
update(self, \*[, verify]) Update the header with new values.
values(self) Like dict.values().
verify(self) Basic check of integrity.

Attributes Documentation

bps
Bits per elementary sample.

cards
The underlying physical cards that make up this Header; it can be looked at, but it should not be modified
directly.

channels_first
True if encoded payload ordering is (nchan, nsample, npol).

comments
View the comments associated with each keyword, if any.

For example, to see the comment on the NAXIS keyword:

>>> header.comments['NAXIS']
number of data axes

Comments can also be updated through this interface:

>>> header.comments['NAXIS'] = 'Number of data axes'

274 Chapter 9. GUPPI

https://docs.python.org/3/library/stdtypes.html#dict.get
https://docs.python.org/3/library/stdtypes.html#dict.items
https://docs.python.org/3/library/stdtypes.html#dict.keys
https://docs.python.org/3/library/stdtypes.html#dict.pop
https://docs.python.org/3/library/stdtypes.html#dict.pop
https://docs.python.org/3/library/stdtypes.html#dict.popitem
https://docs.python.org/3/library/stdtypes.html#dict.setdefault
https://docs.python.org/3/library/stdtypes.html#dict.values


baseband Documentation, Release 3.1.0

complex_data
Whether the data are complex.

frame_nbytes
Size of the frame in bytes.

nbytes
Size of the header in bytes.

nchan
Number of channels.

npol
Number of polarisations.

offset
Offset from start of observation in units of time.

overlap
Number of complete samples that overlap with the next frame.

payload_nbytes
Size of the payload in bytes.

sample_rate
Number of complete samples per second.

Can be set with a negative quantity to set sideband. Overlap samples are not included in the rate.

sample_shape
Shape of a sample in the payload (npol, nchan).

samples_per_frame
Number of complete samples in the frame, including overlap.

sideband
True if upper sideband.

start_time
Start time of the observation.

time
Start time of the part of the observation covered by this header.

Methods Documentation

add_blank(self, value='', before=None, after=None)
Add a blank card.

Parameters

value
[str, optional] Text to be added.

before
[str or int, optional] Same as in Header.update

after
[str or int, optional] Same as in Header.update

add_comment(self, value, before=None, after=None)
Add a COMMENT card.

9.3. Reference/API 275



baseband Documentation, Release 3.1.0

Parameters

value
[str] Text to be added.

before
[str or int, optional] Same as in Header.update

after
[str or int, optional] Same as in Header.update

add_history(self, value, before=None, after=None)
Add a HISTORY card.

Parameters

value
[str] History text to be added.

before
[str or int, optional] Same as in Header.update

after
[str or int, optional] Same as in Header.update

append(self, card=None, useblanks=True, bottom=False, end=False)
Appends a new keyword+value card to the end of the Header, similar to list.append.

By default if the last cards in the Header have commentary keywords, this will append the new keyword
before the commentary (unless the new keyword is also commentary).

Also differs from list.append in that it can be called with no arguments: In this case a blank card is
appended to the end of the Header. In the case all the keyword arguments are ignored.

Parameters

card
[str, tuple] A keyword or a (keyword, value, [comment]) tuple representing a single header
card; the comment is optional in which case a 2-tuple may be used

useblanks
[bool, optional] If there are blank cards at the end of the Header, replace the first blank
card so that the total number of cards in the Header does not increase. Otherwise preserve
the number of blank cards.

bottom
[bool, optional] If True, instead of appending after the last non-commentary card, append
after the last non-blank card.

end
[bool, optional] If True, ignore the useblanks and bottom options, and append at the very
end of the Header.

clear(self)
Remove all cards from the header.

copy(self)
Create a mutable and independent copy of the header.

276 Chapter 9. GUPPI



baseband Documentation, Release 3.1.0

count(self, keyword)
Returns the count of the given keyword in the header, similar to list.count if the Header object is treated
as a list of keywords.

Parameters

keyword
[str] The keyword to count instances of in the header

extend(self, cards, strip=True, unique=False, update=False, update_first=False, useblanks=True, bot-
tom=False, end=False)

Appends multiple keyword+value cards to the end of the header, similar to list.extend.

Parameters

cards
[iterable] An iterable of (keyword, value, [comment]) tuples; see Header.append.

strip
[bool, optional] Remove any keywords that have meaning only to specific types of HDUs,
so that only more general keywords are added from extension Header or Card list (default:
True).

unique
[bool, optional] If True, ensures that no duplicate keywords are appended; keywords al-
ready in this header are simply discarded. The exception is commentary keywords (COM-
MENT, HISTORY, etc.): they are only treated as duplicates if their values match.

update
[bool, optional] If True, update the current header with the values and comments from du-
plicate keywords in the input header. This supersedes the unique argument. Commentary
keywords are treated the same as if unique=True.

update_first
[bool, optional] If the first keyword in the header is ‘SIMPLE’, and the first keyword in
the input header is ‘XTENSION’, the ‘SIMPLE’ keyword is replaced by the ‘XTENSION’
keyword. Likewise if the first keyword in the header is ‘XTENSION’ and the first keyword
in the input header is ‘SIMPLE’, the ‘XTENSION’ keyword is replaced by the ‘SIMPLE’
keyword. This behavior is otherwise dumb as to whether or not the resulting header is a
valid primary or extension header. This is mostly provided to support backwards compat-
ibility with the old Header.fromTxtFile method, and only applies if update=True.

useblanks, bottom, end
[bool, optional] These arguments are passed to Header.append() while appending new
cards to the header.

classmethod fromfile(fh, verify=True)
Reads in GUPPI header block from a file.

Parameters

fh
[filehandle] To read data from.

verify: bool, optional
Whether to do basic checks on whether the header is valid. Verify is automatically called
by fromstring, so this flag exists only to standardize the API.

9.3. Reference/API 277

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
http://docs.astropy.org/en/stable/io/fits/api/headers.html#astropy.io.fits.Header.fromstring


baseband Documentation, Release 3.1.0

classmethod fromkeys(*args, verify=True, mutable=True, **kwargs)
Initialise a header from keyword values.

Like fromvalues, but without any interpretation of keywords.

Note that this just passes kwargs to the class initializer as a dict (for compatibility with fits.Header). It is
present for compatibility with other header classes only.

classmethod fromstring(data, sep='')
Creates an HDU header from a byte string containing the entire header data.

Parameters

data
[str or bytes] String or bytes containing the entire header. In the case of bytes they will be
decoded using latin-1 (only plain ASCII characters are allowed in FITS headers but latin-1
allows us to retain any invalid bytes that might appear in malformatted FITS files).

sep
[str, optional] The string separating cards from each other, such as a newline. By default
there is no card separator (as is the case in a raw FITS file). In general this is only used in
cases where a header was printed as text (e.g. with newlines after each card) and you want
to create a new Header from it by copy/pasting.

Returns

header
A new Header instance.

Examples

>>> from astropy.io.fits import Header
>>> hdr = Header({'SIMPLE': True})
>>> Header.fromstring(hdr.tostring()) == hdr
True

If you want to create a Header from printed text it’s not necessary to have the exact binary structure as it
would appear in a FITS file, with the full 80 byte card length. Rather, each “card” can end in a newline
and does not have to be padded out to a full card length as long as it “looks like” a FITS header:

>>> hdr = Header.fromstring("""\
... SIMPLE = T / conforms to FITS standard
... BITPIX = 8 / array data type
... NAXIS = 0 / number of array dimensions
... EXTEND = T
... """, sep='\n')
>>> hdr['SIMPLE']
True
>>> hdr['BITPIX']
8
>>> len(hdr)
4

classmethod fromtextfile(fileobj, endcard=False)
Read a header from a simple text file or file-like object.

Equivalent to:

278 Chapter 9. GUPPI



baseband Documentation, Release 3.1.0

>>> Header.fromfile(fileobj, sep='\n', endcard=False,
... padding=False)

See also:

fromfile

classmethod fromvalues(**kwargs)
Initialise a header from parsed values.

Here, the parsed values must be given as keyword arguments, i.e., for any header, cls.
fromvalues(**header) == header.

However, unlike for the fromkeys class method, data can also be set using arguments named after header
methods, such as time.

Furthermore, some header defaults are set in GUPPIHeader._defaults.

get(self, key, default=None)
Similar to dict.get()–returns the value associated with keyword in the header, or a default value if the
keyword is not found.

Parameters

key
[str] A keyword that may or may not be in the header.

default
[optional] A default value to return if the keyword is not found in the header.

Returns

value
The value associated with the given keyword, or the default value if the keyword is not in
the header.

index(self, keyword, start=None, stop=None)
Returns the index if the first instance of the given keyword in the header, similar to list.index if the
Header object is treated as a list of keywords.

Parameters

keyword
[str] The keyword to look up in the list of all keywords in the header

start
[int, optional] The lower bound for the index

stop
[int, optional] The upper bound for the index

insert(self, key, card, useblanks=True, after=False)
Inserts a new keyword+value card into the Header at a given location, similar to list.insert.

Parameters

9.3. Reference/API 279

https://docs.python.org/3/library/stdtypes.html#dict.get


baseband Documentation, Release 3.1.0

key
[int, str, or tuple] The index into the list of header keywords before which the new keyword
should be inserted, or the name of a keyword before which the new keyword should be
inserted. Can also accept a (keyword, index) tuple for inserting around duplicate keywords.

card
[str, tuple] A keyword or a (keyword, value, [comment]) tuple; see Header.append

useblanks
[bool, optional] If there are blank cards at the end of the Header, replace the first blank
card so that the total number of cards in the Header does not increase. Otherwise preserve
the number of blank cards.

after
[bool, optional] If set to True, insert after the specified index or keyword, rather than
before it. Defaults to False.

items(self)
Like dict.items().

keys(self)
Like dict.keys()–iterating directly over the Header instance has the same behavior.

pop(self, *args)
Works like list.pop() if no arguments or an index argument are supplied; otherwise works like dict.
pop().

popitem(self)
Similar to dict.popitem().

remove(self, keyword, ignore_missing=False, remove_all=False)
Removes the first instance of the given keyword from the header similar to list.remove if the Header
object is treated as a list of keywords.

Parameters

keyword
[str] The keyword of which to remove the first instance in the header.

ignore_missing
[bool, optional] When True, ignores missing keywords. Otherwise, if the keyword is not
present in the header a KeyError is raised.

remove_all
[bool, optional] When True, all instances of keyword will be removed. Otherwise only the
first instance of the given keyword is removed.

rename_keyword(self, oldkeyword, newkeyword, force=False)
Rename a card’s keyword in the header.

Parameters

oldkeyword
[str or int] Old keyword or card index

newkeyword
[str] New keyword

280 Chapter 9. GUPPI

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/stdtypes.html#dict.items
https://docs.python.org/3/library/stdtypes.html#dict.keys
https://docs.python.org/3/library/stdtypes.html#dict.pop
https://docs.python.org/3/library/stdtypes.html#dict.pop
https://docs.python.org/3/library/stdtypes.html#dict.popitem


baseband Documentation, Release 3.1.0

force
[bool, optional] When True, if the new keyword already exists in the header, force the
creation of a duplicate keyword. Otherwise a ValueError is raised.

set(self, keyword, value=None, comment=None, before=None, after=None)
Set the value and/or comment and/or position of a specified keyword.

If the keyword does not already exist in the header, a new keyword is created in the specified position, or
appended to the end of the header if no position is specified.

This method is similar to Header.update() prior to Astropy v0.1.

Note: It should be noted that header.set(keyword, value) and header.set(keyword, value,
comment) are equivalent to header[keyword] = value and header[keyword] = (value, comment)
respectively.

New keywords can also be inserted relative to existing keywords using, for example:

>>> header.insert('NAXIS1', ('NAXIS', 2, 'Number of axes'))

to insert before an existing keyword, or:

>>> header.insert('NAXIS', ('NAXIS1', 4096), after=True)

to insert after an existing keyword.

The only advantage of using Header.set() is that it easily replaces the old usage of Header.update()
both conceptually and in terms of function signature.

Parameters

keyword
[str] A header keyword

value
[str, optional] The value to set for the given keyword; if None the existing value is kept,
but ‘’ may be used to set a blank value

comment
[str, optional] The comment to set for the given keyword; if None the existing comment is
kept, but '' may be used to set a blank comment

before
[str, int, optional] Name of the keyword, or index of the Card before which this card
should be located in the header. The argument before takes precedence over after if
both specified.

after
[str, int, optional] Name of the keyword, or index of the Card after which this card should
be located in the header.

setdefault(self, key, default=None)
Similar to dict.setdefault().

tofile(self, fh)
Write GUPPI file header to filehandle.

Uses tostring.

9.3. Reference/API 281

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#dict.setdefault
http://docs.astropy.org/en/stable/io/fits/api/headers.html#astropy.io.fits.Header.tostring


baseband Documentation, Release 3.1.0

tostring(self, sep='', endcard=True, padding=True)
Returns a string representation of the header.

By default this uses no separator between cards, adds the END card, and pads the string with spaces to the
next multiple of 2880 bytes. That is, it returns the header exactly as it would appear in a FITS file.

Parameters

sep
[str, optional] The character or string with which to separate cards. By default there is no
separator, but one could use '\\n', for example, to separate each card with a new line

endcard
[bool, optional] If True (default) adds the END card to the end of the header string

padding
[bool, optional] If True (default) pads the string with spaces out to the next multiple of
2880 characters

Returns

s
[str] A string representing a FITS header.

totextfile(self, fileobj, endcard=False, overwrite=False)
Write the header as text to a file or a file-like object.

Equivalent to:

>>> Header.tofile(fileobj, sep='\n', endcard=False,
... padding=False, overwrite=overwrite)

Changed in version 1.3: overwrite replaces the deprecated clobber argument.

See also:

tofile

update(self, *, verify=True, **kwargs)
Update the header with new values.

Here, any keywords matching properties are processed as well, in the order set by the class (in
_properties), and after all other keywords have been processed.

Parameters

verify
[bool, optional] If True (default), verify integrity after updating.

**kwargs
Arguments used to set keywords and properties.

values(self)
Like dict.values().

verify(self)
Basic check of integrity.

282 Chapter 9. GUPPI

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#dict.values


baseband Documentation, Release 3.1.0

GUPPIPayload

class baseband.guppi.GUPPIPayload(words, header=None, sample_shape=(), bps=8, com-
plex_data=False, channels_first=True)

Bases: baseband.vlbi_base.payload.VLBIPayloadBase

Container for decoding and encoding GUPPI payloads.

Parameters

words
[ndarray] Array containg LSB unsigned words (with the right size) that encode the payload.

header
[GUPPIHeader] Header that provides information about how the payload is encoded. If not
given, the following arguments have to be passed in.

bps
[int, optional] Number of bits per sample part (i.e., per channel and per real or imaginary
component). Default: 8.

sample_shape
[tuple, optional] Shape of the samples; e.g., (nchan,). Default: ().

complex_data
[bool, optional] Whether data are complex. Default: False.

channels_first
[bool, optional] Whether the encoded payload is stored as (nchan, nsample, npol), rather
than (nsample, nchan, npol). Default: True.

Attributes Summary

data Full decoded payload.
dtype Numeric type of the decoded data array.
nbytes Size of the payload in bytes.
ndim Number of dimensions of the decoded data array.
shape Shape of the decoded data array.
size Total number of component samples in the decoded

data array.

Methods Summary

fromdata(data[, header, bps, channels_first]) Encode data as a payload.
fromfile(fh[, header, memmap, payload_nbytes]) Read or map encoded data in file.
tofile(self, fh) Write payload to filehandle.

9.3. Reference/API 283

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Attributes Documentation

data
Full decoded payload.

dtype
Numeric type of the decoded data array.

nbytes
Size of the payload in bytes.

ndim
Number of dimensions of the decoded data array.

shape
Shape of the decoded data array.

size
Total number of component samples in the decoded data array.

Methods Documentation

classmethod fromdata(data, header=None, bps=8, channels_first=True)
Encode data as a payload.

Parameters

data
[ndarray] Data to be encoded. The last dimension is taken as the number of channels.

header
[GUPPIHeader, optional] If given, used to infer the bps and channels_first.

bps
[int, optional] Bits per elementary sample, used if header is None. Default: 8.

channels_first
[bool, optional] Whether encoded data should be ordered as (nchan, nsample, npol), used
if header is None. Default: True.

classmethod fromfile(fh, header=None, memmap=False, payload_nbytes=None, **kwargs)
Read or map encoded data in file.

Parameters

fh
[filehandle] Handle to the file which will be read or mapped.

header
[GUPPIHeader, optional] If given, used to infer payload_nbytes, bps, sample_shape,
complex_data and channels_first. If not given, those have to be passed in.

memmap
[bool, optional] If False (default), read from file. Otherwise, map the file in memory (see
memmap).

payload_nbytes
[int, optional] Number of bytes to read (default: as given in header, cls._nbytes, or, for
mapping, to the end of the file).

284 Chapter 9. GUPPI

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.scipy.org/doc/numpy/reference/generated/numpy.memmap.html#numpy.memmap


baseband Documentation, Release 3.1.0

**kwargs
Additional arguments are passed on to the class initializer. These are only needed if
header is not given.

tofile(self, fh)
Write payload to filehandle.

Class Inheritance Diagram

GUPPIFrameVLBIFrameBase

GUPPIHeaderHeader

GUPPIPayloadVLBIPayloadBase

9.3.2 baseband.guppi.header Module

Definitions for GUPPI headers.

Implements a GUPPIHeader class that reads & writes FITS-like headers from file.

Classes

GUPPIHeader(*args[, verify, mutable]) GUPPI baseband file format header.

GUPPIHeader

class baseband.guppi.header.GUPPIHeader(*args, verify=True, mutable=True, **kwargs)
Bases: astropy.io.fits.Header

GUPPI baseband file format header.

Parameters

*args
[str or iterable] If a string, parsed as a GUPPI header from a file, otherwise as for the
astropy.io.fits.Header baseclass.

verify
[bool, optional] Whether to do minimal verification that the header is consistent with the
GUPPI standard. Default: True.

9.3. Reference/API 285

http://docs.astropy.org/en/stable/io/fits/api/headers.html#astropy.io.fits.Header
http://docs.astropy.org/en/stable/io/fits/api/headers.html#astropy.io.fits.Header
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

mutable
[bool, optional] Whether to allow the header to be changed after initialisation. Default:
True.

**kwargs
Any further header keywords to be set.

Notes

Like Header, the initialiser does not accept keyword arguments to populate an array - instead, one must pass an
iterable. In order to ensure keywords are kept in the right order, one should pass on values as a tuple, not as a
dict. E.g., to copy a header, one should not do GUPPIHeader({key: header[key] for key in header}),
but rather:

GUPPIHeader(((key, header[key]) for key in header))

or, to also keep the comments:

GUPPIHeader(((key, (header[key], header.comments[key]))
for key in header))

Construct a Header from an iterable and/or text file.

Parameters

cards
[A list of Card objects, optional] The cards to initialize the header with. Also allowed are
other Header (or dict-like) objects.

Changed in version 1.2: Allowed cards to be a dict-like object.

copy
[bool, optional] If True copies the cards if they were another Header instance. Default is
False.

New in version 1.3.

Attributes Summary

bps Bits per elementary sample.
cards The underlying physical cards that make up this

Header; it can be looked at, but it should not be mod-
ified directly.

channels_first True if encoded payload ordering is (nchan, nsample,
npol).

comments View the comments associated with each keyword, if
any.

complex_data Whether the data are complex.
frame_nbytes Size of the frame in bytes.
nbytes Size of the header in bytes.
nchan Number of channels.
npol Number of polarisations.
offset Offset from start of observation in units of time.

Continued on next page

286 Chapter 9. GUPPI

https://docs.python.org/3/library/constants.html#True
http://docs.astropy.org/en/stable/io/fits/api/headers.html#astropy.io.fits.Header
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict


baseband Documentation, Release 3.1.0

Table 10 – continued from previous page
overlap Number of complete samples that overlap with the

next frame.
payload_nbytes Size of the payload in bytes.
sample_rate Number of complete samples per second.
sample_shape Shape of a sample in the payload (npol, nchan).
samples_per_frame Number of complete samples in the frame, including

overlap.
sideband True if upper sideband.
start_time Start time of the observation.
time Start time of the part of the observation covered by

this header.

Methods Summary

add_blank(self[, value, before, after]) Add a blank card.
add_comment(self, value[, before, after]) Add a COMMENT card.
add_history(self, value[, before, after]) Add a HISTORY card.
append(self[, card, useblanks, bottom, end]) Appends a new keyword+value card to the end of the

Header, similar to list.append.
clear(self) Remove all cards from the header.
copy(self) Create a mutable and independent copy of the header.
count(self, keyword) Returns the count of the given keyword in the header,

similar to list.count if the Header object is treated
as a list of keywords.

extend(self, cards[, strip, unique, update, . . . ]) Appends multiple keyword+value cards to the end of
the header, similar to list.extend.

fromfile(fh[, verify]) Reads in GUPPI header block from a file.
fromkeys(\*args[, verify, mutable]) Initialise a header from keyword values.
fromstring(data[, sep]) Creates an HDU header from a byte string containing

the entire header data.
fromtextfile(fileobj[, endcard]) Read a header from a simple text file or file-like ob-

ject.
fromvalues(\*\*kwargs) Initialise a header from parsed values.
get(self, key[, default]) Similar to dict.get()–returns the value associated

with keyword in the header, or a default value if the
keyword is not found.

index(self, keyword[, start, stop]) Returns the index if the first instance of the given
keyword in the header, similar to list.index if the
Header object is treated as a list of keywords.

insert(self, key, card[, useblanks, after]) Inserts a new keyword+value card into the Header at
a given location, similar to list.insert.

items(self) Like dict.items().
keys(self) Like dict.keys()–iterating directly over the

Header instance has the same behavior.
pop(self, \*args) Works like list.pop() if no arguments or an index

argument are supplied; otherwise works like dict.
pop().

popitem(self) Similar to dict.popitem().
Continued on next page

9.3. Reference/API 287

https://docs.python.org/3/library/stdtypes.html#dict.get
https://docs.python.org/3/library/stdtypes.html#dict.items
https://docs.python.org/3/library/stdtypes.html#dict.keys
https://docs.python.org/3/library/stdtypes.html#dict.pop
https://docs.python.org/3/library/stdtypes.html#dict.pop
https://docs.python.org/3/library/stdtypes.html#dict.popitem


baseband Documentation, Release 3.1.0

Table 11 – continued from previous page
remove(self, keyword[, ignore_missing, . . . ]) Removes the first instance of the given keyword from

the header similar to list.remove if the Header ob-
ject is treated as a list of keywords.

rename_keyword(self, oldkeyword, newkeyword) Rename a card’s keyword in the header.
set(self, keyword[, value, comment, before, . . . ]) Set the value and/or comment and/or position of a

specified keyword.
setdefault(self, key[, default]) Similar to dict.setdefault().
tofile(self, fh) Write GUPPI file header to filehandle.
tostring(self[, sep, endcard, padding]) Returns a string representation of the header.
totextfile(self, fileobj[, endcard, overwrite]) Write the header as text to a file or a file-like object.
update(self, \*[, verify]) Update the header with new values.
values(self) Like dict.values().
verify(self) Basic check of integrity.

Attributes Documentation

bps
Bits per elementary sample.

cards
The underlying physical cards that make up this Header; it can be looked at, but it should not be modified
directly.

channels_first
True if encoded payload ordering is (nchan, nsample, npol).

comments
View the comments associated with each keyword, if any.

For example, to see the comment on the NAXIS keyword:

>>> header.comments['NAXIS']
number of data axes

Comments can also be updated through this interface:

>>> header.comments['NAXIS'] = 'Number of data axes'

complex_data
Whether the data are complex.

frame_nbytes
Size of the frame in bytes.

nbytes
Size of the header in bytes.

nchan
Number of channels.

npol
Number of polarisations.

offset
Offset from start of observation in units of time.

288 Chapter 9. GUPPI

https://docs.python.org/3/library/stdtypes.html#dict.setdefault
https://docs.python.org/3/library/stdtypes.html#dict.values


baseband Documentation, Release 3.1.0

overlap
Number of complete samples that overlap with the next frame.

payload_nbytes
Size of the payload in bytes.

sample_rate
Number of complete samples per second.

Can be set with a negative quantity to set sideband. Overlap samples are not included in the rate.

sample_shape
Shape of a sample in the payload (npol, nchan).

samples_per_frame
Number of complete samples in the frame, including overlap.

sideband
True if upper sideband.

start_time
Start time of the observation.

time
Start time of the part of the observation covered by this header.

Methods Documentation

add_blank(self, value='', before=None, after=None)
Add a blank card.

Parameters

value
[str, optional] Text to be added.

before
[str or int, optional] Same as in Header.update

after
[str or int, optional] Same as in Header.update

add_comment(self, value, before=None, after=None)
Add a COMMENT card.

Parameters

value
[str] Text to be added.

before
[str or int, optional] Same as in Header.update

after
[str or int, optional] Same as in Header.update

add_history(self, value, before=None, after=None)
Add a HISTORY card.

Parameters

9.3. Reference/API 289



baseband Documentation, Release 3.1.0

value
[str] History text to be added.

before
[str or int, optional] Same as in Header.update

after
[str or int, optional] Same as in Header.update

append(self, card=None, useblanks=True, bottom=False, end=False)
Appends a new keyword+value card to the end of the Header, similar to list.append.

By default if the last cards in the Header have commentary keywords, this will append the new keyword
before the commentary (unless the new keyword is also commentary).

Also differs from list.append in that it can be called with no arguments: In this case a blank card is
appended to the end of the Header. In the case all the keyword arguments are ignored.

Parameters

card
[str, tuple] A keyword or a (keyword, value, [comment]) tuple representing a single header
card; the comment is optional in which case a 2-tuple may be used

useblanks
[bool, optional] If there are blank cards at the end of the Header, replace the first blank
card so that the total number of cards in the Header does not increase. Otherwise preserve
the number of blank cards.

bottom
[bool, optional] If True, instead of appending after the last non-commentary card, append
after the last non-blank card.

end
[bool, optional] If True, ignore the useblanks and bottom options, and append at the very
end of the Header.

clear(self)
Remove all cards from the header.

copy(self)
Create a mutable and independent copy of the header.

count(self, keyword)
Returns the count of the given keyword in the header, similar to list.count if the Header object is treated
as a list of keywords.

Parameters

keyword
[str] The keyword to count instances of in the header

extend(self, cards, strip=True, unique=False, update=False, update_first=False, useblanks=True, bot-
tom=False, end=False)

Appends multiple keyword+value cards to the end of the header, similar to list.extend.

Parameters

cards
[iterable] An iterable of (keyword, value, [comment]) tuples; see Header.append.

290 Chapter 9. GUPPI



baseband Documentation, Release 3.1.0

strip
[bool, optional] Remove any keywords that have meaning only to specific types of HDUs,
so that only more general keywords are added from extension Header or Card list (default:
True).

unique
[bool, optional] If True, ensures that no duplicate keywords are appended; keywords al-
ready in this header are simply discarded. The exception is commentary keywords (COM-
MENT, HISTORY, etc.): they are only treated as duplicates if their values match.

update
[bool, optional] If True, update the current header with the values and comments from du-
plicate keywords in the input header. This supersedes the unique argument. Commentary
keywords are treated the same as if unique=True.

update_first
[bool, optional] If the first keyword in the header is ‘SIMPLE’, and the first keyword in
the input header is ‘XTENSION’, the ‘SIMPLE’ keyword is replaced by the ‘XTENSION’
keyword. Likewise if the first keyword in the header is ‘XTENSION’ and the first keyword
in the input header is ‘SIMPLE’, the ‘XTENSION’ keyword is replaced by the ‘SIMPLE’
keyword. This behavior is otherwise dumb as to whether or not the resulting header is a
valid primary or extension header. This is mostly provided to support backwards compat-
ibility with the old Header.fromTxtFile method, and only applies if update=True.

useblanks, bottom, end
[bool, optional] These arguments are passed to Header.append() while appending new
cards to the header.

classmethod fromfile(fh, verify=True)
Reads in GUPPI header block from a file.

Parameters

fh
[filehandle] To read data from.

verify: bool, optional
Whether to do basic checks on whether the header is valid. Verify is automatically called
by fromstring, so this flag exists only to standardize the API.

classmethod fromkeys(*args, verify=True, mutable=True, **kwargs)
Initialise a header from keyword values.

Like fromvalues, but without any interpretation of keywords.

Note that this just passes kwargs to the class initializer as a dict (for compatibility with fits.Header). It is
present for compatibility with other header classes only.

classmethod fromstring(data, sep='')
Creates an HDU header from a byte string containing the entire header data.

Parameters

data
[str or bytes] String or bytes containing the entire header. In the case of bytes they will be
decoded using latin-1 (only plain ASCII characters are allowed in FITS headers but latin-1
allows us to retain any invalid bytes that might appear in malformatted FITS files).

9.3. Reference/API 291

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
http://docs.astropy.org/en/stable/io/fits/api/headers.html#astropy.io.fits.Header.fromstring


baseband Documentation, Release 3.1.0

sep
[str, optional] The string separating cards from each other, such as a newline. By default
there is no card separator (as is the case in a raw FITS file). In general this is only used in
cases where a header was printed as text (e.g. with newlines after each card) and you want
to create a new Header from it by copy/pasting.

Returns

header
A new Header instance.

Examples

>>> from astropy.io.fits import Header
>>> hdr = Header({'SIMPLE': True})
>>> Header.fromstring(hdr.tostring()) == hdr
True

If you want to create a Header from printed text it’s not necessary to have the exact binary structure as it
would appear in a FITS file, with the full 80 byte card length. Rather, each “card” can end in a newline
and does not have to be padded out to a full card length as long as it “looks like” a FITS header:

>>> hdr = Header.fromstring("""\
... SIMPLE = T / conforms to FITS standard
... BITPIX = 8 / array data type
... NAXIS = 0 / number of array dimensions
... EXTEND = T
... """, sep='\n')
>>> hdr['SIMPLE']
True
>>> hdr['BITPIX']
8
>>> len(hdr)
4

classmethod fromtextfile(fileobj, endcard=False)
Read a header from a simple text file or file-like object.

Equivalent to:

>>> Header.fromfile(fileobj, sep='\n', endcard=False,
... padding=False)

See also:

fromfile

classmethod fromvalues(**kwargs)
Initialise a header from parsed values.

Here, the parsed values must be given as keyword arguments, i.e., for any header, cls.
fromvalues(**header) == header.

However, unlike for the fromkeys class method, data can also be set using arguments named after header
methods, such as time.

292 Chapter 9. GUPPI



baseband Documentation, Release 3.1.0

Furthermore, some header defaults are set in GUPPIHeader._defaults.

get(self, key, default=None)
Similar to dict.get()–returns the value associated with keyword in the header, or a default value if the
keyword is not found.

Parameters

key
[str] A keyword that may or may not be in the header.

default
[optional] A default value to return if the keyword is not found in the header.

Returns

value
The value associated with the given keyword, or the default value if the keyword is not in
the header.

index(self, keyword, start=None, stop=None)
Returns the index if the first instance of the given keyword in the header, similar to list.index if the
Header object is treated as a list of keywords.

Parameters

keyword
[str] The keyword to look up in the list of all keywords in the header

start
[int, optional] The lower bound for the index

stop
[int, optional] The upper bound for the index

insert(self, key, card, useblanks=True, after=False)
Inserts a new keyword+value card into the Header at a given location, similar to list.insert.

Parameters

key
[int, str, or tuple] The index into the list of header keywords before which the new keyword
should be inserted, or the name of a keyword before which the new keyword should be
inserted. Can also accept a (keyword, index) tuple for inserting around duplicate keywords.

card
[str, tuple] A keyword or a (keyword, value, [comment]) tuple; see Header.append

useblanks
[bool, optional] If there are blank cards at the end of the Header, replace the first blank
card so that the total number of cards in the Header does not increase. Otherwise preserve
the number of blank cards.

after
[bool, optional] If set to True, insert after the specified index or keyword, rather than
before it. Defaults to False.

items(self)
Like dict.items().

9.3. Reference/API 293

https://docs.python.org/3/library/stdtypes.html#dict.get
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/stdtypes.html#dict.items


baseband Documentation, Release 3.1.0

keys(self)
Like dict.keys()–iterating directly over the Header instance has the same behavior.

pop(self, *args)
Works like list.pop() if no arguments or an index argument are supplied; otherwise works like dict.
pop().

popitem(self)
Similar to dict.popitem().

remove(self, keyword, ignore_missing=False, remove_all=False)
Removes the first instance of the given keyword from the header similar to list.remove if the Header
object is treated as a list of keywords.

Parameters

keyword
[str] The keyword of which to remove the first instance in the header.

ignore_missing
[bool, optional] When True, ignores missing keywords. Otherwise, if the keyword is not
present in the header a KeyError is raised.

remove_all
[bool, optional] When True, all instances of keyword will be removed. Otherwise only the
first instance of the given keyword is removed.

rename_keyword(self, oldkeyword, newkeyword, force=False)
Rename a card’s keyword in the header.

Parameters

oldkeyword
[str or int] Old keyword or card index

newkeyword
[str] New keyword

force
[bool, optional] When True, if the new keyword already exists in the header, force the
creation of a duplicate keyword. Otherwise a ValueError is raised.

set(self, keyword, value=None, comment=None, before=None, after=None)
Set the value and/or comment and/or position of a specified keyword.

If the keyword does not already exist in the header, a new keyword is created in the specified position, or
appended to the end of the header if no position is specified.

This method is similar to Header.update() prior to Astropy v0.1.

Note: It should be noted that header.set(keyword, value) and header.set(keyword, value,
comment) are equivalent to header[keyword] = value and header[keyword] = (value, comment)
respectively.

New keywords can also be inserted relative to existing keywords using, for example:

>>> header.insert('NAXIS1', ('NAXIS', 2, 'Number of axes'))

to insert before an existing keyword, or:

294 Chapter 9. GUPPI

https://docs.python.org/3/library/stdtypes.html#dict.keys
https://docs.python.org/3/library/stdtypes.html#dict.pop
https://docs.python.org/3/library/stdtypes.html#dict.pop
https://docs.python.org/3/library/stdtypes.html#dict.popitem
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/exceptions.html#ValueError


baseband Documentation, Release 3.1.0

>>> header.insert('NAXIS', ('NAXIS1', 4096), after=True)

to insert after an existing keyword.

The only advantage of using Header.set() is that it easily replaces the old usage of Header.update()
both conceptually and in terms of function signature.

Parameters

keyword
[str] A header keyword

value
[str, optional] The value to set for the given keyword; if None the existing value is kept,
but ‘’ may be used to set a blank value

comment
[str, optional] The comment to set for the given keyword; if None the existing comment is
kept, but '' may be used to set a blank comment

before
[str, int, optional] Name of the keyword, or index of the Card before which this card
should be located in the header. The argument before takes precedence over after if
both specified.

after
[str, int, optional] Name of the keyword, or index of the Card after which this card should
be located in the header.

setdefault(self, key, default=None)
Similar to dict.setdefault().

tofile(self, fh)
Write GUPPI file header to filehandle.

Uses tostring.

tostring(self, sep='', endcard=True, padding=True)
Returns a string representation of the header.

By default this uses no separator between cards, adds the END card, and pads the string with spaces to the
next multiple of 2880 bytes. That is, it returns the header exactly as it would appear in a FITS file.

Parameters

sep
[str, optional] The character or string with which to separate cards. By default there is no
separator, but one could use '\\n', for example, to separate each card with a new line

endcard
[bool, optional] If True (default) adds the END card to the end of the header string

padding
[bool, optional] If True (default) pads the string with spaces out to the next multiple of
2880 characters

Returns

9.3. Reference/API 295

https://docs.python.org/3/library/stdtypes.html#dict.setdefault
http://docs.astropy.org/en/stable/io/fits/api/headers.html#astropy.io.fits.Header.tostring


baseband Documentation, Release 3.1.0

s
[str] A string representing a FITS header.

totextfile(self, fileobj, endcard=False, overwrite=False)
Write the header as text to a file or a file-like object.

Equivalent to:

>>> Header.tofile(fileobj, sep='\n', endcard=False,
... padding=False, overwrite=overwrite)

Changed in version 1.3: overwrite replaces the deprecated clobber argument.

See also:

tofile

update(self, *, verify=True, **kwargs)
Update the header with new values.

Here, any keywords matching properties are processed as well, in the order set by the class (in
_properties), and after all other keywords have been processed.

Parameters

verify
[bool, optional] If True (default), verify integrity after updating.

**kwargs
Arguments used to set keywords and properties.

values(self)
Like dict.values().

verify(self)
Basic check of integrity.

Class Inheritance Diagram

GUPPIHeaderHeader

296 Chapter 9. GUPPI

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#dict.values


baseband Documentation, Release 3.1.0

9.3.3 baseband.guppi.payload Module

Payload for GUPPI format.

Classes

GUPPIPayload(words[, header, sample_shape, . . . ]) Container for decoding and encoding GUPPI payloads.

GUPPIPayload

class baseband.guppi.payload.GUPPIPayload(words, header=None, sample_shape=(), bps=8, com-
plex_data=False, channels_first=True)

Bases: baseband.vlbi_base.payload.VLBIPayloadBase

Container for decoding and encoding GUPPI payloads.

Parameters

words
[ndarray] Array containg LSB unsigned words (with the right size) that encode the payload.

header
[GUPPIHeader] Header that provides information about how the payload is encoded. If not
given, the following arguments have to be passed in.

bps
[int, optional] Number of bits per sample part (i.e., per channel and per real or imaginary
component). Default: 8.

sample_shape
[tuple, optional] Shape of the samples; e.g., (nchan,). Default: ().

complex_data
[bool, optional] Whether data are complex. Default: False.

channels_first
[bool, optional] Whether the encoded payload is stored as (nchan, nsample, npol), rather
than (nsample, nchan, npol). Default: True.

Attributes Summary

data Full decoded payload.
dtype Numeric type of the decoded data array.
nbytes Size of the payload in bytes.
ndim Number of dimensions of the decoded data array.
shape Shape of the decoded data array.
size Total number of component samples in the decoded

data array.

9.3. Reference/API 297

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Methods Summary

fromdata(data[, header, bps, channels_first]) Encode data as a payload.
fromfile(fh[, header, memmap, payload_nbytes]) Read or map encoded data in file.
tofile(self, fh) Write payload to filehandle.

Attributes Documentation

data
Full decoded payload.

dtype
Numeric type of the decoded data array.

nbytes
Size of the payload in bytes.

ndim
Number of dimensions of the decoded data array.

shape
Shape of the decoded data array.

size
Total number of component samples in the decoded data array.

Methods Documentation

classmethod fromdata(data, header=None, bps=8, channels_first=True)
Encode data as a payload.

Parameters

data
[ndarray] Data to be encoded. The last dimension is taken as the number of channels.

header
[GUPPIHeader, optional] If given, used to infer the bps and channels_first.

bps
[int, optional] Bits per elementary sample, used if header is None. Default: 8.

channels_first
[bool, optional] Whether encoded data should be ordered as (nchan, nsample, npol), used
if header is None. Default: True.

classmethod fromfile(fh, header=None, memmap=False, payload_nbytes=None, **kwargs)
Read or map encoded data in file.

Parameters

fh
[filehandle] Handle to the file which will be read or mapped.

298 Chapter 9. GUPPI

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

header
[GUPPIHeader, optional] If given, used to infer payload_nbytes, bps, sample_shape,
complex_data and channels_first. If not given, those have to be passed in.

memmap
[bool, optional] If False (default), read from file. Otherwise, map the file in memory (see
memmap).

payload_nbytes
[int, optional] Number of bytes to read (default: as given in header, cls._nbytes, or, for
mapping, to the end of the file).

**kwargs
Additional arguments are passed on to the class initializer. These are only needed if
header is not given.

tofile(self, fh)
Write payload to filehandle.

Class Inheritance Diagram

GUPPIPayloadVLBIPayloadBase

9.3.4 baseband.guppi.frame Module

Classes

GUPPIFrame(header, payload[, valid, verify]) Representation of a GUPPI file, consisting of a header
and payload.

GUPPIFrame

class baseband.guppi.frame.GUPPIFrame(header, payload, valid=True, verify=True)
Bases: baseband.vlbi_base.frame.VLBIFrameBase

Representation of a GUPPI file, consisting of a header and payload.

Parameters

header
[GUPPIHeader] Wrapper around the header lines, providing access to the values.

payload
[GUPPIPayload] Wrapper around the payload, provding mechanisms to decode it.

9.3. Reference/API 299

https://docs.python.org/3/library/constants.html#False
https://docs.scipy.org/doc/numpy/reference/generated/numpy.memmap.html#numpy.memmap


baseband Documentation, Release 3.1.0

valid
[bool, optional] Whether the data are valid. Default: True.

verify
[bool, optional] Whether to do basic verification of integrity. Default: True.

Notes

GUPPI files do not support storing whether data are valid or not on disk. Hence, this has to be determined
independently. If valid=False, any decoded data are set to cls.fill_value (by default, 0).

The Frame can also be instantiated using class methods:

fromfile : read header and and map or read payload from a filehandle

fromdata : encode data as payload

Of course, one can also do the opposite:

tofile : method to write header and payload to filehandle

data : property that yields full decoded payload

One can decode part of the payload by indexing or slicing the frame.

A number of properties are defined: shape, dtype and size are the shape, type and number of complete samples
of the data array, and nbytes the frame size in bytes. Furthermore, the frame acts as a dictionary, with keys
those of the header. Any attribute that is not defined on the frame itself, such as .time will be looked up on the
header as well.

Attributes Summary

data Full decoded frame.
dtype Numeric type of the frame data.
fill_value Value to replace invalid data in the frame.
nbytes Size of the encoded frame in bytes.
ndim Number of dimensions of the frame data.
sample_shape Shape of a sample in the frame (nchan,).
shape Shape of the frame data.
size Total number of component samples in the frame

data.
valid Whether frame contains valid data.

Methods Summary

fromdata(data[, header, valid, verify]) Construct frame from data and header.
fromfile(fh[, memmap, valid, verify]) Read a frame from a filehandle, possible mapping the

payload.
keys(self)
tofile(self, fh) Write encoded frame to filehandle.
verify(self) Simple verification.

300 Chapter 9. GUPPI

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Attributes Documentation

data
Full decoded frame.

dtype
Numeric type of the frame data.

fill_value
Value to replace invalid data in the frame.

nbytes
Size of the encoded frame in bytes.

ndim
Number of dimensions of the frame data.

sample_shape
Shape of a sample in the frame (nchan,).

shape
Shape of the frame data.

size
Total number of component samples in the frame data.

valid
Whether frame contains valid data.

Methods Documentation

classmethod fromdata(data, header=None, valid=True, verify=True, **kwargs)
Construct frame from data and header.

Note that since GUPPI files are generally very large, one would normally map the file, and then set pieces
of it by assigning to slices of the frame. See memmap_frame.

Parameters

data
[ndarray] Array holding complex or real data to be encoded.

header
[GUPPIHeader or None, optional] If not given, will attempt to generate one using the
keywords.

valid
[bool, optional] Whether the data are valid (default: True). Note that this information
cannot be written to disk.

verify
[bool, optional] Whether or not to do basic assertions that check the integrity. Default:
True.

**kwargs
If header is not given, these are used to initialize one.

classmethod fromfile(fh, memmap=True, valid=True, verify=True)
Read a frame from a filehandle, possible mapping the payload.

9.3. Reference/API 301

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Parameters

fh
[filehandle] To read header from.

memmap
[bool, optional] If True (default), use memmap to map the payload. If False, just read it
from disk.

valid
[bool, optional] Whether the data are valid (default: True). Note that this cannot be in-
ferred from the header or payload itself. If False, any data read will be set to cls.
fill_value.

verify
[bool, optional] Whether to do basic verification of integrity. Default: True.

keys(self)

tofile(self, fh)
Write encoded frame to filehandle.

verify(self)
Simple verification. To be added to by subclasses.

Class Inheritance Diagram

GUPPIFrameVLBIFrameBase

9.3.5 baseband.guppi.file_info Module

The GuppiFileReaderInfo property.

Overrides what can be gotten from the first header.

Classes

GUPPIFileReaderInfo([parent])

302 Chapter 9. GUPPI

https://docs.python.org/3/library/constants.html#True
https://docs.scipy.org/doc/numpy/reference/generated/numpy.memmap.html#numpy.memmap
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

GUPPIFileReaderInfo

class baseband.guppi.file_info.GUPPIFileReaderInfo(parent=None)
Bases: baseband.vlbi_base.file_info.VLBIFileReaderInfo

Attributes Summary

attr_names
bps Link to header0.bps
checks Link to checks
complex_data Link to header0.complex_data
decodable Whether decoding the first frame worked.
errors Link to errors
format The file format.
frame0 First frame from the file.
frame_rate Number of frames per unit time.
header0 Header of the first frame in the file.
missing Link to missing
number_of_frames Total number of frames.
readable Whether the file is readable and decodable.
sample_rate Link to header0.sample_rate
sample_shape Link to header0.sample_shape
samples_per_frame Link to header0.samples_per_frame
start_time Time of the first sample.
warnings Link to warnings

Methods Summary

__call__(self) Create a dict with file information.

Attributes Documentation

attr_names = ('format', 'number_of_frames', 'frame_rate', 'sample_rate', 'samples_per_frame', 'sample_shape', 'bps', 'complex_data', 'start_time', 'readable', 'missing', 'checks', 'errors', 'warnings')

bps
Link to header0.bps

checks
Link to checks

complex_data
Link to header0.complex_data

decodable
Whether decoding the first frame worked.

errors
Link to errors

format
The file format.

9.3. Reference/API 303



baseband Documentation, Release 3.1.0

frame0
First frame from the file.

frame_rate
Number of frames per unit time.

header0
Header of the first frame in the file.

missing
Link to missing

number_of_frames
Total number of frames.

readable
Whether the file is readable and decodable.

sample_rate
Link to header0.sample_rate

sample_shape
Link to header0.sample_shape

samples_per_frame
Link to header0.samples_per_frame

start_time
Time of the first sample.

warnings
Link to warnings

Methods Documentation

__call__(self)
Create a dict with file information.

This includes information about checks done, possible missing information, as well as possible warnings
and errors.

Class Inheritance Diagram

GUPPIFileReaderInfoVLBIFileReaderInfoVLBIInfoBase

304 Chapter 9. GUPPI



baseband Documentation, Release 3.1.0

9.3.6 baseband.guppi.base Module

Functions

open(name[, mode]) Open GUPPI file(s) for reading or writing.

open

baseband.guppi.base.open(name, mode='rs', **kwargs)
Open GUPPI file(s) for reading or writing.

Opened as a binary file, one gets a wrapped filehandle that adds methods to read/write a frame. Opened as a
stream, the handle is wrapped further, with methods such as reading and writing to the file as if it were a stream
of samples.

Parameters

name
[str or filehandle, or sequence of str] File name, filehandle, or sequence of file names (see
Notes).

mode
[{‘rb’, ‘wb’, ‘rs’, or ‘ws’}, optional] Whether to open for reading or writing, and as a regular
binary file or as a stream. Default: ‘rs’, for reading a stream.

**kwargs
Additional arguments when opening the file as a stream.

— For reading a stream
[(see GUPPIStreamReader)]

squeeze
[bool, optional] If True (default), remove any dimensions of length unity from decoded data.

subset
[indexing object or tuple of objects, optional] Specific components of the complete sample
to decode (after possibly squeezing). If a single indexing object is passed, it selects polar-
izations. With a tuple, the first selects polarizations and the second selects channels. If the
tuple is empty (default), all components are read.

— For writing a stream
[(see GUPPIStreamWriter)]

header0
[GUPPIHeader] Header for the first frame, holding time information, etc. Can instead give
keyword arguments to construct a header (see **kwargs).

squeeze
[bool, optional] If True (default), writer accepts squeezed arrays as input, and adds any
dimensions of length unity.

frames_per_file
[int, optional] When writing to a sequence of files, sets the number of frames within each
file. Default: 128.

9.3. Reference/API 305

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

**kwargs
If the header is not given, an attempt will be made to construct one with any further keyword
arguments.

— Header keywords
[(see fromvalues())]

time
[Time] Start time of the file. Must have an integer number of seconds.

sample_rate
[Quantity] Number of complete samples per second, i.e. the rate at which each channel of
each polarization is sampled.

samples_per_frame
[int] Number of complete samples per frame. Can alternatively give payload_nbytes.

payload_nbytes
[int] Number of bytes per payload. Can alternatively give samples_per_frame.

offset
[Quantity or TimeDelta, optional] Time offset from the start of the whole observation
(default: 0).

npol
[int, optional] Number of polarizations (default: 1).

nchan
[int, optional] Number of channels (default: 1). For GUPPI, complex data is only allowed
when nchan > 1.

bps
[int, optional] Bits per elementary sample, i.e. per real or imaginary component for complex
data (default: 8).

Returns

Filehandle
GUPPIFileReader or GUPPIFileWriter (binary), or GUPPIStreamReader or
GUPPIStreamWriter (stream).

Notes

For streams, one can also pass to name a list of files, or a template string that can be formatted using ‘stt_imjd’,
‘src_name’, and other header keywords (by GUPPIFileNameSequencer).

For writing, one can mimic, for example, what is done at Arecibo by using the template
‘puppi_{stt_imjd}_{src_name}_{scannum}.{file_nr:04d}.raw’. GUPPI typically has 128 frames per file; to
change this, use the frames_per_file keyword. file_size is set by frames_per_file and cannot be passed.

For reading, to read series such as the above, you will need to use something like
‘puppi_58132_J1810+1744_2176.{file_nr:04d}.raw’. Here we have to pass in the MJD, source name
and scan number explicitly, since the template is used to get the first file name, before any header is read, and
therefore the only keyword available is ‘file_nr’, which is assumed to be zero for the first file. To avoid this
restriction, pass in keyword arguments with values appropriate for the first file.

One may also pass in a sequentialfile object (opened in ‘rb’ mode for reading or ‘w+b’ for writing), though
for typical use cases it is practically identical to passing in a list or template.

306 Chapter 9. GUPPI

http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.TimeDelta.html#astropy.time.TimeDelta


baseband Documentation, Release 3.1.0

Classes

GUPPIFileNameSequencer(template[, header]) List-like generator of GUPPI filenames using a tem-
plate.

GUPPIFileReader(fh_raw) Simple reader for GUPPI files.
GUPPIFileWriter(fh_raw) Simple writer/mapper for GUPPI files.
GUPPIStreamBase(fh_raw, header0[, squeeze, . . . ]) Base for GUPPI streams.
GUPPIStreamReader(fh_raw[, squeeze, subset, . . . ]) GUPPI format reader.
GUPPIStreamWriter(fh_raw, header0[, squeeze]) GUPPI format writer.

GUPPIFileNameSequencer

class baseband.guppi.base.GUPPIFileNameSequencer(template, header={})
Bases: baseband.helpers.sequentialfile.FileNameSequencer

List-like generator of GUPPI filenames using a template.

The template is formatted, filling in any items in curly brackets with values from the header, as well as possibly
a file number equal to the indexing value, indicated with ‘{file_nr}’.

The length of the instance will be the number of files that exist that match the template for increasing values of
the file number (when writing, it is the number of files that have so far been generated).

Parameters

template
[str] Template to format to get specific filenames. Curly bracket item keywords are not
case-sensitive.

header
[dict-like] Structure holding key’d values that are used to fill in the format. Keys must be in
all caps (eg. DATE), as with GUPPI header keys.

Examples

>>> from baseband import guppi
>>> gfs = guppi.base.GUPPIFileNameSequencer(
... '{date}_{file_nr:03d}.raw', {'DATE': "2018-01-01"})
>>> gfs[10]
'2018-01-01_010.raw'
>>> from baseband.data import SAMPLE_PUPPI
>>> with open(SAMPLE_PUPPI, 'rb') as fh:
... header = guppi.GUPPIHeader.fromfile(fh)
>>> template = 'puppi_{stt_imjd}_{src_name}_{scannum}.{file_nr:04d}.raw'
>>> gfs = guppi.base.GUPPIFileNameSequencer(template, header)
>>> gfs[0]
'puppi_58132_J1810+1744_2176.0000.raw'
>>> gfs[10]
'puppi_58132_J1810+1744_2176.0010.raw'

9.3. Reference/API 307



baseband Documentation, Release 3.1.0

GUPPIFileReader

class baseband.guppi.base.GUPPIFileReader(fh_raw)
Bases: baseband.vlbi_base.base.VLBIFileReaderBase

Simple reader for GUPPI files.

Wraps a binary filehandle, providing methods to help interpret the data, such as read_frame and
get_frame_rate. By default, frame payloads are mapped rather than fully read into physical memory.

Parameters

fh_raw
[filehandle] Filehandle of the raw binary data file.

Attributes Summary

info()

Methods Summary

close(self)
find_header(self, \*args, \*\*kwargs) Find the nearest header from the current position.
get_frame_rate(self) Determine the number of frames per second.
locate_frames(self, pattern, \*[, mask, . . . ]) Use a pattern to locate frame starts near the current

position.
read_frame(self[, memmap, verify]) Read the frame header and read or map the corre-

sponding payload.
read_header(self) Read a single header from the file.
temporary_offset(self) Context manager for temporarily seeking to another

file position.

Attributes Documentation

info

Methods Documentation

close(self)

find_header(self, *args, **kwargs)
Find the nearest header from the current position.

If successful, the file pointer is left at the start of the header.

Parameters are as for locate_frames.

Returns

308 Chapter 9. GUPPI



baseband Documentation, Release 3.1.0

header
Retrieved header.

Raises

~baseband.vlbi_base.base.HeaderNotFoundError
If no header could be located.

AssertionError
If the header did not pass verification.

get_frame_rate(self)
Determine the number of frames per second.

The routine uses the sample rate and number of samples per frame (excluding overlap) from the first header
in the file.

Returns

frame_rate
[Quantity] Frames per second.

locate_frames(self, pattern, *, mask=None, frame_nbytes=None, offset=0, forward=True, maxi-
mum=None, check=1)

Use a pattern to locate frame starts near the current position.

Note that the current position is always included.

Parameters

pattern
[header, ~numpy.ndaray, bytes, int, or iterable of int] Synchronization pattern to look for.
If a header or header class, invariant_pattern() is used to create a masked pattern,
using invariant keys from invariants(). If an ndarray or bytes instance, a byte array
view is taken. If an (iterable of) int, the integers need to be unsigned 32 bit and will be
interpreted as little-endian.

mask
[~numpy.ndarray, bytes, int, or iterable of int.] Bit mask for the pattern, with 1 indicating
a given bit will be used the comparison.

frame_nbytes
[int, optional] Frame size in bytes. Defaults to the frame size in any header passed in.

offset
[int, optional] Offset from the frame start that the pattern occurs. Any offsets inferred from
masked entries are added to this (hence, no offset needed when a header is passed in as
pattern).

forward
[bool, optional] Seek forward if True (default), backward if False.

maximum
[int, optional] Maximum number of bytes to search away from the present location. De-
fault: search twice the frame size if given, otherwise 1 million (extra bytes to avoid partial
patterns will be added). Use 0 to check only at the current position.

check
[int or tuple of int, optional] Frame offsets where another sync pattern should be present
(if inside the file). Ignored if frame_nbytes is not given. Default: 1, i.e., a sync pattern

9.3. Reference/API 309

http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False


baseband Documentation, Release 3.1.0

should be present one frame after the one found (independent of forward), thus helping
to guarantee the frame is not corrupted.

Returns

locations
[list of int] Locations of sync patterns within the range scanned, in order of proximity to
the starting position.

read_frame(self, memmap=True, verify=True)
Read the frame header and read or map the corresponding payload.

Parameters

memmap
[bool, optional] If True (default), map the payload using memmap, so that parts are only
loaded into memory as needed to access data.

verify
[bool, optional] Whether to do basic checks of frame integrity. Default: True.

Returns

frame
[GUPPIFrame] With .header and .payload properties. The .data property returns all
data encoded in the frame. Since this may be too large to fit in memory, it may be better
to access the parts of interest by slicing the frame.

read_header(self)
Read a single header from the file.

Returns

header
[GUPPIHeader]

temporary_offset(self)
Context manager for temporarily seeking to another file position.

To be used as part of a with statement:

with fh_raw.temporary_offset() [as fh_raw]:
with-block

On exiting the with-block, the file pointer is moved back to its original position.

GUPPIFileWriter

class baseband.guppi.base.GUPPIFileWriter(fh_raw)
Bases: baseband.vlbi_base.base.VLBIFileBase

Simple writer/mapper for GUPPI files.

Adds write_frame and memmap_frame methods to the VLBI binary file wrapper. The latter allows one to
encode data in pieces, writing to disk as needed.

310 Chapter 9. GUPPI

https://docs.python.org/3/library/constants.html#True
https://docs.scipy.org/doc/numpy/reference/generated/numpy.memmap.html#numpy.memmap
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Methods Summary

close(self)
memmap_frame(self[, header]) Get frame by writing the header to disk and mapping

its payload.
temporary_offset(self) Context manager for temporarily seeking to another

file position.
write_frame(self, data[, header]) Write a single frame (header plus payload).

Methods Documentation

close(self)

memmap_frame(self, header=None, **kwargs)
Get frame by writing the header to disk and mapping its payload.

The header is written to disk immediately, but the payload is mapped, so that it can be filled in pieces, by
setting slices of the frame.

Parameters

header
[GUPPIHeader] Written to disk immediately. Can instead give keyword arguments to con-
struct a header.

**kwargs
If header is not given, these are used to initialize one.

Returns

frame: GUPPIFrame
By assigning slices to data, the payload can be encoded piecewise.

temporary_offset(self)
Context manager for temporarily seeking to another file position.

To be used as part of a with statement:

with fh_raw.temporary_offset() [as fh_raw]:
with-block

On exiting the with-block, the file pointer is moved back to its original position.

write_frame(self, data, header=None, **kwargs)
Write a single frame (header plus payload).

Parameters

data
[ndarray or GUPPIFrame] If an array, a header should be given, which will be used to get
the information needed to encode the array, and to construct the GUPPI frame.

header
[GUPPIHeader] Can instead give keyword arguments to construct a header. Ignored if
data is a GUPPIFrame instance.

9.3. Reference/API 311

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


baseband Documentation, Release 3.1.0

**kwargs
If header is not given, these are used to initialize one.

GUPPIStreamBase

class baseband.guppi.base.GUPPIStreamBase(fh_raw, header0, squeeze=True, subset=(), verify=True)
Bases: baseband.vlbi_base.base.VLBIStreamBase

Base for GUPPI streams.

Attributes Summary

bps Bits per elementary sample.
complex_data Whether the data are complex.
header0 First header of the file.
sample_rate Number of complete samples per second.
sample_shape Shape of a complete sample (possibly subset or

squeezed).
samples_per_frame Number of complete samples per frame, excluding

overlap.
squeeze Whether data arrays have dimensions with length

unity removed.
start_time Start time of the file.
subset Specific components of the complete sample to de-

code.
time Time of the sample pointer’s current offset in file.
verify Whether to do consistency checks on frames being

read.

Methods Summary

close(self)
tell(self[, unit]) Current offset in the file.

Attributes Documentation

bps
Bits per elementary sample.

complex_data
Whether the data are complex.

header0
First header of the file.

sample_rate
Number of complete samples per second.

sample_shape
Shape of a complete sample (possibly subset or squeezed).

312 Chapter 9. GUPPI



baseband Documentation, Release 3.1.0

samples_per_frame
Number of complete samples per frame, excluding overlap.

squeeze
Whether data arrays have dimensions with length unity removed.

If True, data read out has such dimensions removed, and data passed in for writing has them inserted.

start_time
Start time of the file.

See also time for the time of the sample pointer’s current offset.

subset
Specific components of the complete sample to decode.

The order of dimensions is the same as for sample_shape. Set by the class initializer.

time
Time of the sample pointer’s current offset in file.

See also start_time for the start time of the file.

verify
Whether to do consistency checks on frames being read.

Methods Documentation

close(self)

tell(self, unit=None)
Current offset in the file.

Parameters

unit
[Unit or str, optional] Time unit the offset should be returned in. By default, no unit is
used, i.e., an integer enumerating samples is returned. For the special string ‘time’, the
absolute time is calculated.

Returns

offset
[int, Quantity, or Time] Offset in current file (or time at current position).

GUPPIStreamReader

class baseband.guppi.base.GUPPIStreamReader(fh_raw, squeeze=True, subset=(), verify=True)
Bases: baseband.guppi.base.GUPPIStreamBase, baseband.vlbi_base.base.VLBIStreamReaderBase

GUPPI format reader.

Allows access to GUPPI files as a continuous series of samples.

Parameters

9.3. Reference/API 313

https://docs.python.org/3/library/constants.html#True
http://docs.astropy.org/en/stable/api/astropy.units.Unit.html#astropy.units.Unit
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time


baseband Documentation, Release 3.1.0

fh_raw
[filehandle] Filehandle of the raw GUPPI stream.

squeeze
[bool, optional] If True (default), remove any dimensions of length unity from decoded data.

subset
[indexing object or tuple of objects, optional] Specific components of the complete sample
to decode (after possibly squeezing). If a single indexing object is passed, it selects polar-
izations. With a tuple, the first selects polarizations and the second selects channels. If the
tuple is empty (default), all components are read.

verify
[bool, optional] Whether to do basic checks of frame integrity when reading. The first frame
of the stream is always checked, so verify is effective only when reading sequences of files.
Default: True.

Attributes Summary

bps Bits per elementary sample.
complex_data Whether the data are complex.
dtype
fill_value Value to use for invalid or missing data.
header0 First header of the file.
info() Standardized information on stream readers.
ndim Number of dimensions of the (squeezed/subset)

stream data.
sample_rate Number of complete samples per second.
sample_shape Shape of a complete sample (possibly subset or

squeezed).
samples_per_frame Number of complete samples per frame, excluding

overlap.
shape Shape of the (squeezed/subset) stream data.
size Total number of component samples in the

(squeezed/subset) stream data.
squeeze Whether data arrays have dimensions with length

unity removed.
start_time Start time of the file.
stop_time Time at the end of the file, just after the last sample.
subset Specific components of the complete sample to de-

code.
time Time of the sample pointer’s current offset in file.
verify Whether to do consistency checks on frames being

read.

314 Chapter 9. GUPPI

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Methods Summary

close(self)
read(self[, count, out]) Read a number of complete (or subset) samples.
readable(self) Whether the file can be read and decoded.
seek(self, offset[, whence]) Change the stream position.
tell(self[, unit]) Current offset in the file.

Attributes Documentation

bps
Bits per elementary sample.

complex_data
Whether the data are complex.

dtype

fill_value
Value to use for invalid or missing data. Default: 0.

header0
First header of the file.

info
Standardized information on stream readers.

The info descriptor provides a few standard attributes, most of which can also be accessed directly on the
stream filehandle, and tests basic readability of the stream. More detailed information on the underlying
file is stored in its info, accessible via info.file_info (and shown by __repr__).

Attributes

start_time
[Time] Time of the first complete sample.

stop_time
[Time] Time of the complete sample just beyond the end of the file.

sample_rate
[Quantity] Complete samples per unit of time.

shape
[tuple] Equivalent shape of the whole file, i.e., combining the number of complete samples
and the shape of those samples.

bps
[int] Number of bits used to encode each elementary sample.

complex_data
[bool] Whether the data are complex.

verify
[bool or str] The type of verification done by the stream reader.

readable
[bool] Whether the first and last samples could be read and decoded.

9.3. Reference/API 315

http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity


baseband Documentation, Release 3.1.0

checks
[dict] Checks that were done to determine whether the file was readable (normally ‘con-
tinuous’ and ‘decodable’).

errors
[dict] Any exceptions raised while trying to determine attributes or doing checks. Keyed
by the attributes/checks.

warnings
[dict] Any warnings about the attributes or about the checks. Keyed by the at-
tributes/checks.

ndim
Number of dimensions of the (squeezed/subset) stream data.

sample_rate
Number of complete samples per second.

sample_shape
Shape of a complete sample (possibly subset or squeezed).

samples_per_frame
Number of complete samples per frame, excluding overlap.

shape
Shape of the (squeezed/subset) stream data.

size
Total number of component samples in the (squeezed/subset) stream data.

squeeze
Whether data arrays have dimensions with length unity removed.

If True, data read out has such dimensions removed, and data passed in for writing has them inserted.

start_time
Start time of the file.

See also time for the time of the sample pointer’s current offset, and (if available) stop_time for the time
at the end of the file.

stop_time
Time at the end of the file, just after the last sample.

See also start_time for the start time of the file, and time for the time of the sample pointer’s current
offset.

subset
Specific components of the complete sample to decode.

The order of dimensions is the same as for sample_shape. Set by the class initializer.

time
Time of the sample pointer’s current offset in file.

See also start_time for the start time, and (if available) stop_time for the end time, of the file.

verify
Whether to do consistency checks on frames being read.

316 Chapter 9. GUPPI

https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Methods Documentation

close(self)

read(self, count=None, out=None)
Read a number of complete (or subset) samples.

The range retrieved can span multiple frames.

Parameters

count
[int or None, optional] Number of complete/subset samples to read. If None (default) or
negative, the whole file is read. Ignored if out is given.

out
[None or array, optional] Array to store the data in. If given, count will be inferred from
the first dimension; the other dimension should equal sample_shape.

Returns

out
[ndarray of float or complex] The first dimension is sample-time, and the remainder given
by sample_shape.

readable(self)
Whether the file can be read and decoded.

seek(self, offset, whence=0)
Change the stream position.

This works like a normal filehandle seek, but the offset is in samples (or a relative or absolute time).

Parameters

offset
[int, Quantity, or Time] Offset to move to. Can be an (integer) number of samples, an
offset in time units, or an absolute time.

whence
[{0, 1, 2, ‘start’, ‘current’, or ‘end’}, optional] Like regular seek, the offset is taken to be
from the start if whence=0 (default), from the current position if 1, and from the end if 2.
One can alternativey use ‘start’, ‘current’, or ‘end’ for 0, 1, or 2, respectively. Ignored if
offset is a time.

tell(self, unit=None)
Current offset in the file.

Parameters

unit
[Unit or str, optional] Time unit the offset should be returned in. By default, no unit is
used, i.e., an integer enumerating samples is returned. For the special string ‘time’, the
absolute time is calculated.

Returns

9.3. Reference/API 317

https://docs.python.org/3/library/constants.html#None
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.units.Unit.html#astropy.units.Unit


baseband Documentation, Release 3.1.0

offset
[int, Quantity, or Time] Offset in current file (or time at current position).

GUPPIStreamWriter

class baseband.guppi.base.GUPPIStreamWriter(fh_raw, header0, squeeze=True)
Bases: baseband.guppi.base.GUPPIStreamBase, baseband.vlbi_base.base.VLBIStreamWriterBase

GUPPI format writer.

Encodes and writes sequences of samples to file.

Parameters

raw
[filehandle] For writing the header and raw data to storage.

header0
[GUPPIHeader] Header for the first frame, holding time information, etc.

squeeze
[bool, optional] If True (default), write accepts squeezed arrays as input, and adds any
dimensions of length unity.

Attributes Summary

bps Bits per elementary sample.
complex_data Whether the data are complex.
header0 First header of the file.
sample_rate Number of complete samples per second.
sample_shape Shape of a complete sample (possibly subset or

squeezed).
samples_per_frame Number of complete samples per frame, excluding

overlap.
squeeze Whether data arrays have dimensions with length

unity removed.
start_time Start time of the file.
subset Specific components of the complete sample to de-

code.
time Time of the sample pointer’s current offset in file.
verify Whether to do consistency checks on frames being

read.

318 Chapter 9. GUPPI

http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Methods Summary

close(self)
tell(self[, unit]) Current offset in the file.
write(self, data[, valid]) Write data, buffering by frames as needed.

Attributes Documentation

bps
Bits per elementary sample.

complex_data
Whether the data are complex.

header0
First header of the file.

sample_rate
Number of complete samples per second.

sample_shape
Shape of a complete sample (possibly subset or squeezed).

samples_per_frame
Number of complete samples per frame, excluding overlap.

squeeze
Whether data arrays have dimensions with length unity removed.

If True, data read out has such dimensions removed, and data passed in for writing has them inserted.

start_time
Start time of the file.

See also time for the time of the sample pointer’s current offset.

subset
Specific components of the complete sample to decode.

The order of dimensions is the same as for sample_shape. Set by the class initializer.

time
Time of the sample pointer’s current offset in file.

See also start_time for the start time of the file.

verify
Whether to do consistency checks on frames being read.

9.3. Reference/API 319

https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Methods Documentation

close(self)

tell(self, unit=None)
Current offset in the file.

Parameters

unit
[Unit or str, optional] Time unit the offset should be returned in. By default, no unit is
used, i.e., an integer enumerating samples is returned. For the special string ‘time’, the
absolute time is calculated.

Returns

offset
[int, Quantity, or Time] Offset in current file (or time at current position).

write(self, data, valid=True)
Write data, buffering by frames as needed.

Parameters

data
[ndarray] Piece of data to be written, with sample dimensions as given by sample_shape.
This should be properly scaled to make best use of the dynamic range delivered by the
encoding.

valid
[bool, optional] Whether the current data are valid. Default: True.

320 Chapter 9. GUPPI

http://docs.astropy.org/en/stable/api/astropy.units.Unit.html#astropy.units.Unit
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Class Inheritance Diagram

FileNameSequencer GUPPIFileNameSequencer

GUPPIFileReaderVLBIFileReaderBase

GUPPIFileWriter
VLBIFileBase

GUPPIStreamBase

GUPPIStreamReader

GUPPIStreamWriter

VLBIStreamBase

VLBIStreamReaderBase

VLBIStreamWriterBase

9.3. Reference/API 321



baseband Documentation, Release 3.1.0

322 Chapter 9. GUPPI



CHAPTER

TEN

GSB

The GMRT software backend (GSB) file format is the standard output of the initial correlator of the Giant Metrewave
Radio Telescope (GMRT). The GSB design is described by Roy et al. (2010, Exper. Astron. 28:25-60) with further
specifications and operating procedures given on the relevant GMRT/GSB pages.

10.1 File Structure

A GSB dataset consists of an ASCII file with a sequence of headers, and one or more accompanying binary data files.
Each line in the header and its corresponding data comprise a data frame, though these do not have explicit divisions
in the data files.

Baseband currently supports two forms of GSB data: rawdump, for storing real-valued raw voltage timestreams, and
phased, for storing complex pre-channelized data from the GMRT in phased array baseband mode.

Data in rawdump format is stored in a binary file representing the voltage stream from one polarization of a single
dish. Each such file is accompanied by a header file which contains GPS timestamps, in the form:

YYYY MM DD HH MM SS 0.SSSSSSSSS

In the default rawdump observing setup, samples are recorded at a rate of 33.3333. . . megasamples per second (Msps).
Each sample is 4 bits in size, and two samples are grouped into bytes such that the oldest sample occupies the least
significant bit. Each frame consists of 4 megabytes of data, or 223, samples; as such, the timespan of one frame is
exactly 0.25165824 s.

Data in phased format is normally spread over four binary files and one accompanying header file. The binary files
come in two pairs, one for each polarization, with the pair contain the first and second half of the data of each frame.

When recording GSB in phased array voltage beam (ie. baseband) mode, the “raw”, or pre-channelized, sample rate
is either 33.3333. . . Msps at 8 bits per sample or 66.6666. . . Msps at 4 bits per sample (in the latter case, sample
bit-ordering is the same as for rawdump). Channelization via fast Fourier transform sets the channelized complete
sample rate to the raw rate divided by 2𝑁F, where 𝑁F is the number of Fourier channels (either 256 or 512). The
timespan of one frame is 0.25165824 s, and one frame is 8 megabytes in size, for either raw sample rate.

The phased header’s structure is:

<PC TIME> <GPS TIME> <SEQ NUMBER> <MEM BLOCK>

where <PC TIME> and <GPS TIME> are the less accurate computer-based and exact GPS-based timestamps, respectively,
with the same format as the rawdump timestamp; <SEQ NUMBER> is the frame number; and <MEM BLOCK> a redundant
modulo-8 shared memory block number.

323

http://www.gmrt.ncra.tifr.res.in/
http://www.gmrt.ncra.tifr.res.in/
https://doi.org/10.1007%2Fs10686-010-9187-0
http://gmrt.ncra.tifr.res.in/gmrt_hpage/sub_system/gmrt_gsb/index.htm
http://gmrt.ncra.tifr.res.in/gmrt_hpage/sub_system/gmrt_gsb/GSB_rawdump_data_format_v2.pdf
http://gmrt.ncra.tifr.res.in/gmrt_hpage/sub_system/gmrt_gsb/GSB_beam_timestamp_note_v1.pdf


baseband Documentation, Release 3.1.0

10.2 Usage Notes

This section covers reading and writing GSB files with Baseband; general usage is covered in the Using Baseband
section. While Baseband features the general baseband.open and baseband.file_info functions, these cannot read
GSB binary files without the accompanying timestamp file (at which point it is obvious the files are GSB). baseband.
file_info, however, can be used on the timestamp file to determine if it is in rawdump or phased format.

The examples below use the samplefiles in the baseband/data/gsb/ directory, and the numpy, astropy.units and
baseband.gsb modules:

>>> import numpy as np
>>> import astropy.units as u
>>> from baseband import gsb
>>> from baseband.data import (
... SAMPLE_GSB_RAWDUMP, SAMPLE_GSB_RAWDUMP_HEADER,
... SAMPLE_GSB_PHASED, SAMPLE_GSB_PHASED_HEADER)

A single timestamp file can be opened with open in text mode:

>>> ft = gsb.open(SAMPLE_GSB_RAWDUMP_HEADER, 'rt')
>>> ft.read_timestamp()
<GSBRawdumpHeader gps: 2015 04 27 18 45 00 0.000000240>
>>> ft.close()

Reading payloads requires the samples per frame or sample rate. For phased the sample rate is:

sample_rate = raw_sample_rate / (2 * nchan)

where the raw sample rate is the pre-channelized one, and nchan the number of Fourier channels. The samples per
frame for both rawdump and phased is:

samples_per_frame = timespan_of_frame * sample_rate

Note: Since the number of samples per frame is an integer number while both the frame timespan and sample
rate are not, it is better to separately caculate samples_per_frame rather than multiplying timespan_of_frame with
sample_rate in order to avoid rounding issues.

Alternatively, if the size of the frame buffer and the frame rate are known, the former can be used to determine
samples_per_frame, and the latter used to determine sample_rate by inverting the above equation.

If samples_per_frame is not given, Baseband assumes it is the equivalent of 4 megabytes of data for rawdump,
or 8 megabytes if phased. If sample_rate is not given, it is calculated from samples_per_frame assuming
timespan_of_frame = 0.25165824 (see File Structure above).

A single payload file can be opened with open in binary mode. Here, for our sample file, we have to take into account
that in order to keep these files small, their sample size has been reduced to only 4 or 8 kilobytes worth of samples
per frame (for the default timespan). So, we define their sample rate here, and use that to calculate payload_nbytes,
the size of one frame in bytes. Since rawdump samples are 4 bits, payload_nbytes is just samples_per_frame / 2:

>>> rawdump_samples_per_frame = 2**13
>>> payload_nbytes = rawdump_samples_per_frame // 2
>>> fb = gsb.open(SAMPLE_GSB_RAWDUMP, 'rb', payload_nbytes=payload_nbytes,
... nchan=1, bps=4, complex_data=False)
>>> payload = fb.read_payload()
>>> payload[:4]

(continues on next page)

324 Chapter 10. GSB

https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy
http://docs.astropy.org/en/stable/units/index.html#module-astropy.units


baseband Documentation, Release 3.1.0

(continued from previous page)

array([[ 0.],
[-2.],
[-2.],
[ 0.]], dtype=float32)

>>> fb.close()

(payload_nbytes for phased data is the size of one frame divided by the number of binary files.)

Opening in stream mode allows timestamp and binary files to be read in concert to create data frames, and also wraps
the low-level routines such that reading and writing is in units of samples, and provides access to header information.

When opening a rawdump file in stream mode, we pass the timestamp file as the first argument, and the binary file to
the raw keyword. As per above, we also pass samples_per_frame:

>>> fh_rd = gsb.open(SAMPLE_GSB_RAWDUMP_HEADER, mode='rs',
... raw=SAMPLE_GSB_RAWDUMP,
... samples_per_frame=rawdump_samples_per_frame)
>>> fh_rd.header0
<GSBRawdumpHeader gps: 2015 04 27 18 45 00 0.000000240>
>>> dr = fh_rd.read()
>>> dr.shape
(81920,)
>>> dr[:3]
array([ 0., -2., -2.], dtype=float32)
>>> fh_rd.close()

To open a phased fileset in stream mode, we package the binary files into a nested tuple with the format:

((L pol stream 1, L pol stream 2), (R pol stream 1, R pol stream 2))

The nested tuple is passed to raw (note that we again have to pass a non-default sample rate):

>>> phased_samples_per_frame = 2**3
>>> fh_ph = gsb.open(SAMPLE_GSB_PHASED_HEADER, mode='rs',
... raw=SAMPLE_GSB_PHASED,
... samples_per_frame=phased_samples_per_frame)
>>> header0 = fh_ph.header0 # To be used for writing, below.
>>> dp = fh_ph.read()
>>> dp.shape
(80, 2, 512)
>>> dp[0, 0, :3]
array([30.+12.j, -1. +8.j, 7.+19.j], dtype=complex64)
>>> fh_ph.close()

To set up a file for writing, we need to pass names for both timestamp and raw files, as well as sample_rate,
samples_per_frame, and either the first header or a time object. We first calculate sample_rate:

>>> timespan = 0.25165824 * u.s
>>> rawdump_sample_rate = (rawdump_samples_per_frame / timespan).to(u.MHz)
>>> phased_sample_rate = (phased_samples_per_frame / timespan).to(u.MHz)

To write a rawdump file:

>>> from astropy.time import Time
>>> fw_rd = gsb.open('test_rawdump.timestamp',
... mode='ws', raw='test_rawdump.dat',
... sample_rate=rawdump_sample_rate,

(continues on next page)

10.2. Usage Notes 325



baseband Documentation, Release 3.1.0

(continued from previous page)

... samples_per_frame=rawdump_samples_per_frame,

... time=Time('2015-04-27T13:15:00'))
>>> fw_rd.write(dr)
>>> fw_rd.close()
>>> fh_rd = gsb.open('test_rawdump.timestamp', mode='rs',
... raw='test_rawdump.dat',
... sample_rate=rawdump_sample_rate,
... samples_per_frame=rawdump_samples_per_frame)
>>> np.all(dr == fh_rd.read())
True
>>> fh_rd.close()

To write a phased file, we need to pass a nested tuple of filenames or filehandles:

>>> test_phased_bin = (('test_phased_pL1.dat', 'test_phased_pL2.dat'),
... ('test_phased_pR1.dat', 'test_phased_pR2.dat'))
>>> fw_ph = gsb.open('test_phased.timestamp',
... mode='ws', raw=test_phased_bin,
... sample_rate=phased_sample_rate,
... samples_per_frame=phased_samples_per_frame,
... header0=header0)
>>> fw_ph.write(dp)
>>> fw_ph.close()
>>> fh_ph = gsb.open('test_phased.timestamp', mode='rs',
... raw=test_phased_bin,
... sample_rate=phased_sample_rate,
... samples_per_frame=phased_samples_per_frame)
>>> np.all(dp == fh_ph.read())
True
>>> fh_ph.close()

Baseband does not use the PC time in the phased header, and, when writing, simply uses the same time for both
GPS and PC times. Since the PC time can drift from the GPS time by several tens of milliseconds, test_phased.
timestamp will not be identical to SAMPLE_GSB_PHASED, even though we have written the exact same data to file.

10.3 Reference/API

10.3.1 baseband.gsb Package

GMRT Software Backend (GSB) data reader.

See http://gmrt.ncra.tifr.res.in/gmrt_hpage/sub_system/gmrt_gsb/index.htm

Functions

open(name[, mode]) Open GSB file(s) for reading or writing.

326 Chapter 10. GSB

http://gmrt.ncra.tifr.res.in/gmrt_hpage/sub_system/gmrt_gsb/index.htm


baseband Documentation, Release 3.1.0

open

baseband.gsb.open(name, mode='rs', **kwargs)
Open GSB file(s) for reading or writing.

A GSB data set contains a text header file and one or more raw data files. When the file is opened as text,
one gets a standard filehandle, but with methods to read/write timestamps. When it is opened as a binary, one
similarly gets methods to read/write frames. Opened as a stream, the file is interpreted as a timestamp file, but
raw files need to be given too. This allows access to the stream(s) as series of samples.

Parameters

name
[str] Filename of timestamp or raw data file.

mode
[{‘rb’, ‘wb’, ‘rt’, ‘wt’, ‘rs’, or ‘ws’}, optional] Whether to open for reading or writing, and
as a regular text or binary file (for timestamps and data, respectively) or as a stream. Default:
‘rs’, for reading a stream.

**kwargs
Additional arguments when opening the file as a stream.

— For both reading and writing of streams :

raw
[str or (tuple of) tuple of str] Name of files holding payload data. A single file is needed
for rawdump, and a tuple for phased. For a nested tuple, the outer tuple determines the
number of polarizations, and the inner tuple(s) the number of streams per polarization. E.g.,
((polL1, polL2), (polR1, polR2)) for two streams per polarization. A single tuple is
interpreted as streams of a single polarization.

sample_rate
[Quantity, optional] Number of complete samples per second, i.e. the rate at which each
channel of each polarization is sampled. If None, will be inferred assuming the frame rate is
exactly 251.658240 ms.

samples_per_frame
[int, optional] Number of complete samples per frame. Can give payload_nbytes instead.

payload_nbytes
[int, optional] Number of bytes per payload, divided by the number of raw files. If both
samples_per_frame and payload_nbytes are None, payload_nbytes is set to 2**22 (4
MB) for rawdump, and 2**23 (8 MB) divided by the number of streams per polarization for
phased.

nchan
[int, optional] Number of channels. Default: 1 for rawdump, 512 for phased.

bps
[int, optional] Bits per elementary sample, i.e. per real or imaginary component for complex
data. Default: 4 for rawdump, 8 for phased.

complex_data
[bool, optional] Whether data are complex. Default: False for rawdump, True for phased.

squeeze
[bool, optional] If True (default) and reading, remove any dimensions of length unity from

10.3. Reference/API 327

http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

decoded data. If True and writing, accept squeezed arrays as input, and adds any dimensions
of length unity.

— For reading only
[(see GSBStreamReader)]

subset
[indexing object or tuple of objects, optional] Specific components of the complete sample
to decode (after possibly squeezing). If a single indexing object is passed, it selects (avail-
able) polarizations. If a tuple is passed, the first selects polarizations and the second selects
channels. If the tuple is empty (default), all components are read.

verify
[bool, optional] Whether to do basic checks of frame integrity when reading. The first frame
of the stream is always checked. Default: True.

— For writing only
[(see GSBStreamWriter)]

header0
[GSBHeader] Header for the first frame, holding time information, etc. Can instead give
keyword arguments to construct a header.

**kwargs
If the header is not given, an attempt will be made to construct one with any further keyword
arguments. If one requires to explicitly set the mode of the GSB stream, use header_mode.
If not given, it will be ‘rawdump’ if only a single raw file is present, or ‘phased’ otherwise.
See GSBStreamWriter.

Returns

Filehandle
GSBFileReader or GSBFileWriter (binary), or GSBStreamReader or GSBStreamWriter
(stream)

Classes

GSBFrame(header, payload[, valid, verify]) Frame encapsulating GSB rawdump or phased data.
GSBHeader(words[, mode, nbytes, utc_offset, . . . ]) GSB Header, based on a line from a timestamp file.
GSBPayload(words[, sample_shape, bps, . . . ]) Container for decoding and encoding GSB payloads.

GSBFrame

class baseband.gsb.GSBFrame(header, payload, valid=True, verify=True)
Bases: baseband.vlbi_base.frame.VLBIFrameBase

Frame encapsulating GSB rawdump or phased data.

For rawdump data, lines in the timestamp file are associated with single blocks of raw data. For phased data,
the lines are associated with one or two polarisations, each consisting of two blocks of raw data. Hence, the raw
data come from two or four files.

Parameters

header

328 Chapter 10. GSB

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

[GSBHeader] Based on line from rawdump or phased timestamp file.

payload
[GSBPayload] Based on a single block of rawdump data, or the combined blocks for phased
data.

valid
[bool, optional] Whether the data are valid. Default: True.

verify
[bool, optional] Whether to verify consistency of the frame parts. Default: True.

Notes

GSB files do not support storing whether data are valid or not on disk. Hence, this has to be determined
independently. If valid=False, any decoded data are set to cls.fill_value (by default, 0).

The Frame can also be read instantiated using class methods:

fromfile : read header and payload from their respective filehandles

fromdata : encode data as payload

Of course, one can also do the opposite:

tofile
[method to write header and payload to filehandles (splitting] payload in the appropriate files).

data : property that yields full decoded payload

A number of properties are defined: shape, dtype and size are the shape, type and number of complete samples
of the data array, and nbytes the frame size in bytes. Furthermore, the frame acts as a dictionary, with keys
those of the header. Any attribute that is not defined on the frame itself, such as .time will be looked up on the
header as well.

Attributes Summary

data Full decoded frame.
dtype Numeric type of the frame data.
fill_value Value to replace invalid data in the frame.
nbytes Size of the encoded frame in the raw data file in

bytes.
ndim Number of dimensions of the frame data.
sample_shape Shape of a sample in the frame (nchan,).
shape Shape of the frame data.
size Total number of component samples in the frame

data.
valid Whether frame contains valid data.

10.3. Reference/API 329

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Methods Summary

fromdata(data, header, \*args[, valid, verify]) Construct frame from data and header.
fromfile(fh_ts, fh_raw[, payload_nbytes, . . . ]) Read a frame from timestamp and raw data filehan-

dles.
keys(self)
tofile(self, fh_ts, fh_raw) Write encoded frame to timestamp and raw data file-

handles.
verify(self) Simple verification.

Attributes Documentation

data
Full decoded frame.

dtype
Numeric type of the frame data.

fill_value
Value to replace invalid data in the frame.

nbytes
Size of the encoded frame in the raw data file in bytes.

ndim
Number of dimensions of the frame data.

sample_shape
Shape of a sample in the frame (nchan,).

shape
Shape of the frame data.

size
Total number of component samples in the frame data.

valid
Whether frame contains valid data.

Methods Documentation

classmethod fromdata(data, header, *args, valid=True, verify=True, **kwargs)
Construct frame from data and header.

Parameters

data
[ndarray] Array holding data to be encoded.

header
[VLBIHeaderBase] Header for the frame.

*args, **kwargs :
Any arguments beyond the filehandle are used to help initialize the payload, except for
valid and verify, which are passed on to the header and class initializers.

330 Chapter 10. GSB

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


baseband Documentation, Release 3.1.0

valid
[bool, optional] Whether this payload contains valid data.

verify
[bool, optional] Whether to verify the header and frame correctness.

classmethod fromfile(fh_ts, fh_raw, payload_nbytes=16777216, nchan=1, bps=4, com-
plex_data=False, valid=True, verify=True)

Read a frame from timestamp and raw data filehandles.

Any arguments beyond the filehandle are used to help initialize the payload, except for valid and verify,
which are passed on to the header and class initializers.

Parameters

fh_ts
[filehandle] To the timestamp file. The next line will be read.

fh_raw
[file_handle or tuple] Should be a single handle for a rawdump data frame, or a tuple
containing tuples with pairs of handles for a phased one. E.g., ((L1, L2), (R1, R2))
for left and right polarisations.

payload_nbytes
[int, optional] Size of the individual payloads in bytes. Default: 2**24 (16 MB).

nchan
[int, optional] Number of channels. Default: 1.

bps
[int, optional] Bits per elementary sample. Default: 4.

complex_data
[bool, optional] Whether data are complex. Default: False.

valid
[bool, optional] Whether the data are valid (default: True). Note that this cannot be in-
ferred from the header or payload itself. If False, any data read will be set to cls.
fill_value.

verify
[bool, optional] Whether to verify consistency of the frame parts. Default: True.

keys(self)

tofile(self, fh_ts, fh_raw)
Write encoded frame to timestamp and raw data filehandles.

Parameters

fh_ts
[filehandle] To the timestamp file. A line will be added to it.

fh_raw
[file_handle or tuple] Should be a single handle for a rawdump data frame, or a tuple
containing tuples with pairs of handles for a phased one. E.g., ((L1, L2), (R1, R2))
for left and right polarisations.

verify(self)
Simple verification. To be added to by subclasses.

10.3. Reference/API 331

https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

GSBHeader

class baseband.gsb.GSBHeader(words, mode=None, nbytes=None, utc_offset=<Quantity 5.5 h>, ver-
ify=True)

Bases: baseband.vlbi_base.header.VLBIHeaderBase

GSB Header, based on a line from a timestamp file.

Parameters

words
[list of str, or None] If None, set to a list of empty strings for later initialisation.

mode
[str or None, optional] Mode in which data was taken: ‘phased’ or ‘rawdump’. If None, it is
determined from the words.

nbytes
[int or None, optional] Number of characters in the header, including trailing blank spaces
and carriage returns. If None, is determined from the words assuming one trailing blank
space and one CR.

verify
[bool, optional] Whether to do basic verification of integrity. Default: True.

Returns

header
[GSBHeader subclass] As appropriate for the mode.

Attributes Summary

mode Mode in which data was taken: ‘phased’ or ‘raw-
dump’.

mutable Whether the header can be modified.
nbytes Size of the header in characters.

Methods Summary

copy(self, \*\*kwargs) Create a mutable and independent copy of the header.
fromfile(fh, \*args, \*\*kwargs) Read GSB Header from a line from a timestamp file.
fromkeys([mode, nbytes]) Initialise a header from parsed values.
fromvalues([mode, nbytes]) Initialise a header from parsed values.
invariant_pattern([invariants]) Pattern and mask shared between headers of a type

or stream.
invariants() Set of keys of invariant header parts.
keys(self) All keys defined for this header.
seek_offset(self, n[, nbytes]) Offset in bytes needed to move a file pointer to an-

other header.
tofile(self, fh) Write GSB header as a line to the filehandle.
update(self, \*[, verify]) Update the header by setting keywords or properties.

Continued on next page

332 Chapter 10. GSB

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Table 6 – continued from previous page
verify(self) Verify that the length of the words is consistent.

Attributes Documentation

mode
Mode in which data was taken: ‘phased’ or ‘rawdump’.

mutable
Whether the header can be modified.

nbytes
Size of the header in characters.

Assumes the string terminates in one blank space and one carriage return.

Methods Documentation

copy(self, **kwargs)
Create a mutable and independent copy of the header.

Keyword arguments can be passed on as needed by possible subclasses.

classmethod fromfile(fh, *args, **kwargs)
Read GSB Header from a line from a timestamp file.

Arguments are the same as for class initialisation. The header constructed will be immutable.

classmethod fromkeys(mode=None, nbytes=None, *args, **kwargs)
Initialise a header from parsed values.

Like fromvalues, but without any interpretation of keywords.

Raises

KeyError
[if not all keys required are present in kwargs]

classmethod fromvalues(mode=None, nbytes=None, *args, **kwargs)
Initialise a header from parsed values.

Here, the parsed values must be given as keyword arguments, i.e., for any header = cls(<words>),
cls.fromvalues(**header) == header.

However, unlike for the fromkeys class method, data can also be set using arguments named after header
methods, such as time.

Parameters

*args
Possible arguments required to initialize an empty header.

**kwargs
Values used to initialize header keys or methods.

classmethod invariant_pattern(invariants=None, **kwargs)
Pattern and mask shared between headers of a type or stream.

This is mostly for use inside locate_frames().

10.3. Reference/API 333



baseband Documentation, Release 3.1.0

Parameters

invariants
[set of str, optional] Set of keys to header parts that are shared between all headers of a
given type or within a given stream/file. Default: from invariants().

**kwargs
Keyword arguments needed to instantiate an empty header. (Mostly for Mark 4).

Returns

pattern
[list of int] The pattern that is shared between headers. If called on an instance, just the
header words; if called on a class, words with defaults for the relevant parts set.

mask
[list of int] For each entry in pattern a bit mask with bits set for the parts that are invariant.

classmethod invariants()
Set of keys of invariant header parts.

On the class, this returns keys of parts that are shared by all headers for the type, on an instance, those that
are shared with other headers in the same file.

If neither are defined, returns ‘sync_pattern’ if the header containts that key.

keys(self)
All keys defined for this header.

seek_offset(self, n, nbytes=None)
Offset in bytes needed to move a file pointer to another header.

Some GSB headers have variable size and hence one cannot trivially jump to another entry in a timestamp
file. This routine allows one to calculate the offset required to move the file pointer n headers.

Parameters

n
[int] The number of headers to move to, relative to the present header.

nbytes
[int, optional] The size in bytes of the present header (if not given, will use the header’s
nbytes property).

tofile(self, fh)
Write GSB header as a line to the filehandle.

update(self, *, verify=True, **kwargs)
Update the header by setting keywords or properties.

Here, any keywords matching header keys are applied first, and any remaining ones are used to set header
properties, in the order set by the class (in _properties).

Parameters

verify
[bool, optional] If True (default), verify integrity after updating.

**kwargs
Arguments used to set keywords and properties.

334 Chapter 10. GSB

https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

verify(self)
Verify that the length of the words is consistent.

Subclasses should override this to do more thorough checks.

GSBPayload

class baseband.gsb.GSBPayload(words, sample_shape=(), bps=2, complex_data=False)
Bases: baseband.vlbi_base.payload.VLBIPayloadBase

Container for decoding and encoding GSB payloads.

Parameters

words
[ndarray] Array containg LSB unsigned words (with the right size) that encode the payload.

sample_shape
[tuple, optional] Shape of the samples; e.g., (nchan,). Default: ().

bps
[int, optional] Bits per elementary sample. Default: 2.

complex_data
[bool, optional] Whether data are complex. Default: False.

Attributes Summary

data Full decoded payload.
dtype Numeric type of the decoded data array.
nbytes Size of the payload in bytes.
ndim Number of dimensions of the decoded data array.
shape Shape of the decoded data array.
size Total number of component samples in the decoded

data array.

Methods Summary

fromdata(data[, header, bps]) Encode data as a payload.
fromfile(fh[, payload_nbytes, nchan, bps, . . . ]) Read payloads from several threads.
tofile(self, fh) Write payload to filehandle.

10.3. Reference/API 335

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#False


baseband Documentation, Release 3.1.0

Attributes Documentation

data
Full decoded payload.

dtype
Numeric type of the decoded data array.

nbytes
Size of the payload in bytes.

ndim
Number of dimensions of the decoded data array.

shape
Shape of the decoded data array.

size
Total number of component samples in the decoded data array.

Methods Documentation

classmethod fromdata(data, header=None, bps=2)
Encode data as a payload.

Parameters

data
[ndarray] Data to be encoded. The last dimension is taken as the number of channels.

header
[header instance, optional] If given, used to infer the bps.

bps
[int, optional] Bits per elementary sample, i.e., per channel and per real or imaginary
component, used if header is not given. Default: 2.

classmethod fromfile(fh, payload_nbytes=None, nchan=1, bps=4, complex_data=False)
Read payloads from several threads.

Parameters

fh
[filehandle or tuple of tuple of filehandle] Handles to the sets of files from which data
are read. The outer tuple holds distinct threads, while the inner ones holds parts of those
threads. Typically, these are the two polarisations and the two parts of each in which
phased baseband data are stored.

payload_nbytes
[int] Number of bytes to read from each part.

nchan
[int, optional] Number of channels. Default: 1.

bps
[int, optional] Bits per elementary sample. Default: 4.

complex_data
[bool, optional] Whether data are complex. Default: False.

336 Chapter 10. GSB

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#False


baseband Documentation, Release 3.1.0

tofile(self, fh)
Write payload to filehandle.

Class Inheritance Diagram

GSBFrameVLBIFrameBase

GSBHeaderVLBIHeaderBase

GSBPayloadVLBIPayloadBase

10.3.2 baseband.gsb.header Module

Definitions for GSB Headers, using the timestamp files.

Somewhat out of data description for phased data: http://gmrt.ncra.tifr.res.in/gmrt_hpage/sub_system/gmrt_gsb/GSB_
beam_timestamp_note_v1.pdf and for rawdump data http://gmrt.ncra.tifr.res.in/gmrt_hpage/sub_system/gmrt_gsb/
GSB_rawdump_data_format_v2.pdf

Classes

TimeGSB(val1, val2, scale, precision, . . . [, . . . ]) GSB header date-time format YYYY MM DD HH MM SS
0.SSSSSSSSS.

GSBHeader(words[, mode, nbytes, utc_offset, . . . ]) GSB Header, based on a line from a timestamp file.
GSBRawdumpHeader(words[, mode, nbytes, . . . ]) GSB rawdump header.
GSBPhasedHeader(words[, mode, nbytes, . . . ]) GSB phased header.

TimeGSB

class baseband.gsb.header.TimeGSB(val1, val2, scale, precision, in_subfmt, out_subfmt, from_jd=False)
Bases: astropy.time.TimeString

GSB header date-time format YYYY MM DD HH MM SS 0.SSSSSSSSS.

For example, 2000 01 01 00 00 00 0.000000000 is midnight on January 1, 2000.

10.3. Reference/API 337

http://gmrt.ncra.tifr.res.in/gmrt_hpage/sub_system/gmrt_gsb/GSB_beam_timestamp_note_v1.pdf
http://gmrt.ncra.tifr.res.in/gmrt_hpage/sub_system/gmrt_gsb/GSB_beam_timestamp_note_v1.pdf
http://gmrt.ncra.tifr.res.in/gmrt_hpage/sub_system/gmrt_gsb/GSB_rawdump_data_format_v2.pdf
http://gmrt.ncra.tifr.res.in/gmrt_hpage/sub_system/gmrt_gsb/GSB_rawdump_data_format_v2.pdf
http://docs.astropy.org/en/stable/api/astropy.time.TimeString.html#astropy.time.TimeString


baseband Documentation, Release 3.1.0

Attributes Summary

cache Return the cache associated with this instance.
jd1
jd2
jd2_filled
mask
masked
name
scale Time scale
value

Methods Summary

format_string(self, str_fmt, \*\*kwargs) Write time to a string using a given format.
mask_if_needed(self, value)
parse_string(self, timestr, subfmts) Read time from a single string, using a set of possible

formats.
set_jds(self, val1, val2) Parse the time strings contained in val1 and set jd1,

jd2
str_kwargs(self) Generator that yields a dict of values corresponding

to the calendar date and time for the internal JD val-
ues.

to_value(self[, parent]) Return time representation from internal jd1 and jd2.

Attributes Documentation

cache
Return the cache associated with this instance.

jd1

jd2

jd2_filled

mask

masked

name = 'gsb'

scale
Time scale

value

338 Chapter 10. GSB



baseband Documentation, Release 3.1.0

Methods Documentation

format_string(self, str_fmt, **kwargs)
Write time to a string using a given format.

By default, just interprets str_fmt as a format string, but subclasses can add to this.

mask_if_needed(self, value)

parse_string(self, timestr, subfmts)
Read time from a single string, using a set of possible formats.

set_jds(self, val1, val2)
Parse the time strings contained in val1 and set jd1, jd2

str_kwargs(self)
Generator that yields a dict of values corresponding to the calendar date and time for the internal JD
values.

to_value(self, parent=None)
Return time representation from internal jd1 and jd2. This is the base method that ignores parent and
requires that subclasses implement the value property. Subclasses that require parent or have other
optional args for to_value should compute and return the value directly.

GSBHeader

class baseband.gsb.header.GSBHeader(words, mode=None, nbytes=None, utc_offset=<Quantity 5.5 h>,
verify=True)

Bases: baseband.vlbi_base.header.VLBIHeaderBase

GSB Header, based on a line from a timestamp file.

Parameters

words
[list of str, or None] If None, set to a list of empty strings for later initialisation.

mode
[str or None, optional] Mode in which data was taken: ‘phased’ or ‘rawdump’. If None, it is
determined from the words.

nbytes
[int or None, optional] Number of characters in the header, including trailing blank spaces
and carriage returns. If None, is determined from the words assuming one trailing blank
space and one CR.

verify
[bool, optional] Whether to do basic verification of integrity. Default: True.

Returns

header
[GSBHeader subclass] As appropriate for the mode.

10.3. Reference/API 339

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Attributes Summary

mode Mode in which data was taken: ‘phased’ or ‘raw-
dump’.

mutable Whether the header can be modified.
nbytes Size of the header in characters.

Methods Summary

copy(self, \*\*kwargs) Create a mutable and independent copy of the header.
fromfile(fh, \*args, \*\*kwargs) Read GSB Header from a line from a timestamp file.
fromkeys([mode, nbytes]) Initialise a header from parsed values.
fromvalues([mode, nbytes]) Initialise a header from parsed values.
invariant_pattern([invariants]) Pattern and mask shared between headers of a type

or stream.
invariants() Set of keys of invariant header parts.
keys(self) All keys defined for this header.
seek_offset(self, n[, nbytes]) Offset in bytes needed to move a file pointer to an-

other header.
tofile(self, fh) Write GSB header as a line to the filehandle.
update(self, \*[, verify]) Update the header by setting keywords or properties.
verify(self) Verify that the length of the words is consistent.

Attributes Documentation

mode
Mode in which data was taken: ‘phased’ or ‘rawdump’.

mutable
Whether the header can be modified.

nbytes
Size of the header in characters.

Assumes the string terminates in one blank space and one carriage return.

Methods Documentation

copy(self, **kwargs)
Create a mutable and independent copy of the header.

Keyword arguments can be passed on as needed by possible subclasses.

classmethod fromfile(fh, *args, **kwargs)
Read GSB Header from a line from a timestamp file.

Arguments are the same as for class initialisation. The header constructed will be immutable.

classmethod fromkeys(mode=None, nbytes=None, *args, **kwargs)
Initialise a header from parsed values.

Like fromvalues, but without any interpretation of keywords.

340 Chapter 10. GSB



baseband Documentation, Release 3.1.0

Raises

KeyError
[if not all keys required are present in kwargs]

classmethod fromvalues(mode=None, nbytes=None, *args, **kwargs)
Initialise a header from parsed values.

Here, the parsed values must be given as keyword arguments, i.e., for any header = cls(<words>),
cls.fromvalues(**header) == header.

However, unlike for the fromkeys class method, data can also be set using arguments named after header
methods, such as time.

Parameters

*args
Possible arguments required to initialize an empty header.

**kwargs
Values used to initialize header keys or methods.

classmethod invariant_pattern(invariants=None, **kwargs)
Pattern and mask shared between headers of a type or stream.

This is mostly for use inside locate_frames().

Parameters

invariants
[set of str, optional] Set of keys to header parts that are shared between all headers of a
given type or within a given stream/file. Default: from invariants().

**kwargs
Keyword arguments needed to instantiate an empty header. (Mostly for Mark 4).

Returns

pattern
[list of int] The pattern that is shared between headers. If called on an instance, just the
header words; if called on a class, words with defaults for the relevant parts set.

mask
[list of int] For each entry in pattern a bit mask with bits set for the parts that are invariant.

classmethod invariants()
Set of keys of invariant header parts.

On the class, this returns keys of parts that are shared by all headers for the type, on an instance, those that
are shared with other headers in the same file.

If neither are defined, returns ‘sync_pattern’ if the header containts that key.

keys(self)
All keys defined for this header.

seek_offset(self, n, nbytes=None)
Offset in bytes needed to move a file pointer to another header.

10.3. Reference/API 341



baseband Documentation, Release 3.1.0

Some GSB headers have variable size and hence one cannot trivially jump to another entry in a timestamp
file. This routine allows one to calculate the offset required to move the file pointer n headers.

Parameters

n
[int] The number of headers to move to, relative to the present header.

nbytes
[int, optional] The size in bytes of the present header (if not given, will use the header’s
nbytes property).

tofile(self, fh)
Write GSB header as a line to the filehandle.

update(self, *, verify=True, **kwargs)
Update the header by setting keywords or properties.

Here, any keywords matching header keys are applied first, and any remaining ones are used to set header
properties, in the order set by the class (in _properties).

Parameters

verify
[bool, optional] If True (default), verify integrity after updating.

**kwargs
Arguments used to set keywords and properties.

verify(self)
Verify that the length of the words is consistent.

Subclasses should override this to do more thorough checks.

GSBRawdumpHeader

class baseband.gsb.header.GSBRawdumpHeader(words, mode=None, nbytes=None, utc_offset=<Quantity
5.5 h>, verify=True)

Bases: baseband.gsb.header.GSBHeader

GSB rawdump header.

Attributes Summary

gps_time
mode Mode in which data was taken: ‘phased’ or ‘raw-

dump’.
mutable Whether the header can be modified.
nbytes Size of the header in characters.
time

342 Chapter 10. GSB

https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Methods Summary

copy(self, \*\*kwargs) Create a mutable and independent copy of the header.
fromfile(fh, \*args, \*\*kwargs) Read GSB Header from a line from a timestamp file.
fromkeys([mode, nbytes]) Initialise a header from parsed values.
fromvalues([mode, nbytes]) Initialise a header from parsed values.
invariant_pattern([invariants]) Pattern and mask shared between headers of a type

or stream.
invariants() Set of keys of invariant header parts.
keys(self) All keys defined for this header.
seek_offset(self, n[, nbytes]) Offset in bytes needed to move a file pointer to an-

other header.
tofile(self, fh) Write GSB header as a line to the filehandle.
update(self, \*[, verify]) Update the header by setting keywords or properties.
verify(self) Verify that the length of the words is consistent.

Attributes Documentation

gps_time

mode
Mode in which data was taken: ‘phased’ or ‘rawdump’.

mutable
Whether the header can be modified.

nbytes
Size of the header in characters.

Assumes the string terminates in one blank space and one carriage return.

time

Methods Documentation

copy(self, **kwargs)
Create a mutable and independent copy of the header.

Keyword arguments can be passed on as needed by possible subclasses.

classmethod fromfile(fh, *args, **kwargs)
Read GSB Header from a line from a timestamp file.

Arguments are the same as for class initialisation. The header constructed will be immutable.

classmethod fromkeys(mode=None, nbytes=None, *args, **kwargs)
Initialise a header from parsed values.

Like fromvalues, but without any interpretation of keywords.

Raises

KeyError
[if not all keys required are present in kwargs]

10.3. Reference/API 343



baseband Documentation, Release 3.1.0

classmethod fromvalues(mode=None, nbytes=None, *args, **kwargs)
Initialise a header from parsed values.

Here, the parsed values must be given as keyword arguments, i.e., for any header = cls(<words>),
cls.fromvalues(**header) == header.

However, unlike for the fromkeys class method, data can also be set using arguments named after header
methods, such as time.

Parameters

*args
Possible arguments required to initialize an empty header.

**kwargs
Values used to initialize header keys or methods.

classmethod invariant_pattern(invariants=None, **kwargs)
Pattern and mask shared between headers of a type or stream.

This is mostly for use inside locate_frames().

Parameters

invariants
[set of str, optional] Set of keys to header parts that are shared between all headers of a
given type or within a given stream/file. Default: from invariants().

**kwargs
Keyword arguments needed to instantiate an empty header. (Mostly for Mark 4).

Returns

pattern
[list of int] The pattern that is shared between headers. If called on an instance, just the
header words; if called on a class, words with defaults for the relevant parts set.

mask
[list of int] For each entry in pattern a bit mask with bits set for the parts that are invariant.

classmethod invariants()
Set of keys of invariant header parts.

On the class, this returns keys of parts that are shared by all headers for the type, on an instance, those that
are shared with other headers in the same file.

If neither are defined, returns ‘sync_pattern’ if the header containts that key.

keys(self)
All keys defined for this header.

seek_offset(self, n, nbytes=None)
Offset in bytes needed to move a file pointer to another header.

Some GSB headers have variable size and hence one cannot trivially jump to another entry in a timestamp
file. This routine allows one to calculate the offset required to move the file pointer n headers.

Parameters

344 Chapter 10. GSB



baseband Documentation, Release 3.1.0

n
[int] The number of headers to move to, relative to the present header.

nbytes
[int, optional] The size in bytes of the present header (if not given, will use the header’s
nbytes property).

tofile(self, fh)
Write GSB header as a line to the filehandle.

update(self, *, verify=True, **kwargs)
Update the header by setting keywords or properties.

Here, any keywords matching header keys are applied first, and any remaining ones are used to set header
properties, in the order set by the class (in _properties).

Parameters

verify
[bool, optional] If True (default), verify integrity after updating.

**kwargs
Arguments used to set keywords and properties.

verify(self)
Verify that the length of the words is consistent.

Subclasses should override this to do more thorough checks.

GSBPhasedHeader

class baseband.gsb.header.GSBPhasedHeader(words, mode=None, nbytes=None, utc_offset=<Quantity
5.5 h>, verify=True)

Bases: baseband.gsb.header.GSBRawdumpHeader

GSB phased header.

Attributes Summary

gps_time
mode Mode in which data was taken: ‘phased’ or ‘raw-

dump’.
mutable Whether the header can be modified.
nbytes Size of the header in characters.
pc_time
time

10.3. Reference/API 345

https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Methods Summary

copy(self, \*\*kwargs) Create a mutable and independent copy of the header.
fromfile(fh, \*args, \*\*kwargs) Read GSB Header from a line from a timestamp file.
fromkeys([mode, nbytes]) Initialise a header from parsed values.
fromvalues([mode, nbytes]) Initialise a header from parsed values.
invariant_pattern([invariants]) Pattern and mask shared between headers of a type

or stream.
invariants() Set of keys of invariant header parts.
keys(self) All keys defined for this header.
seek_offset(self, n[, nbytes]) Offset in bytes needed to move a file pointer to an-

other header.
tofile(self, fh) Write GSB header as a line to the filehandle.
update(self, \*[, verify]) Update the header by setting keywords or properties.
verify(self) Verify that the length of the words is consistent.

Attributes Documentation

gps_time

mode
Mode in which data was taken: ‘phased’ or ‘rawdump’.

mutable
Whether the header can be modified.

nbytes
Size of the header in characters.

Assumes the string terminates in one blank space and one carriage return.

pc_time

time

Methods Documentation

copy(self, **kwargs)
Create a mutable and independent copy of the header.

Keyword arguments can be passed on as needed by possible subclasses.

classmethod fromfile(fh, *args, **kwargs)
Read GSB Header from a line from a timestamp file.

Arguments are the same as for class initialisation. The header constructed will be immutable.

classmethod fromkeys(mode=None, nbytes=None, *args, **kwargs)
Initialise a header from parsed values.

Like fromvalues, but without any interpretation of keywords.

Raises

346 Chapter 10. GSB



baseband Documentation, Release 3.1.0

KeyError
[if not all keys required are present in kwargs]

classmethod fromvalues(mode=None, nbytes=None, *args, **kwargs)
Initialise a header from parsed values.

Here, the parsed values must be given as keyword arguments, i.e., for any header = cls(<words>),
cls.fromvalues(**header) == header.

However, unlike for the fromkeys class method, data can also be set using arguments named after header
methods, such as time.

Parameters

*args
Possible arguments required to initialize an empty header.

**kwargs
Values used to initialize header keys or methods.

classmethod invariant_pattern(invariants=None, **kwargs)
Pattern and mask shared between headers of a type or stream.

This is mostly for use inside locate_frames().

Parameters

invariants
[set of str, optional] Set of keys to header parts that are shared between all headers of a
given type or within a given stream/file. Default: from invariants().

**kwargs
Keyword arguments needed to instantiate an empty header. (Mostly for Mark 4).

Returns

pattern
[list of int] The pattern that is shared between headers. If called on an instance, just the
header words; if called on a class, words with defaults for the relevant parts set.

mask
[list of int] For each entry in pattern a bit mask with bits set for the parts that are invariant.

classmethod invariants()
Set of keys of invariant header parts.

On the class, this returns keys of parts that are shared by all headers for the type, on an instance, those that
are shared with other headers in the same file.

If neither are defined, returns ‘sync_pattern’ if the header containts that key.

keys(self)
All keys defined for this header.

seek_offset(self, n, nbytes=None)
Offset in bytes needed to move a file pointer to another header.

GSB headers for phased data differ in size depending on the sequence number, making it impossible to
trivially jump to another entry in a timestamp file. This routine allows one to calculate the offset required
to move the file pointer n headers.

10.3. Reference/API 347



baseband Documentation, Release 3.1.0

Parameters

n
[int] The number of headers to move to, relative to the present header.

nbytes
[int, optional] The size in bytes of the present header (if not given, will use the header’s
nbytes property).

tofile(self, fh)
Write GSB header as a line to the filehandle.

update(self, *, verify=True, **kwargs)
Update the header by setting keywords or properties.

Here, any keywords matching header keys are applied first, and any remaining ones are used to set header
properties, in the order set by the class (in _properties).

Parameters

verify
[bool, optional] If True (default), verify integrity after updating.

**kwargs
Arguments used to set keywords and properties.

verify(self)
Verify that the length of the words is consistent.

Subclasses should override this to do more thorough checks.

Class Inheritance Diagram

GSBHeader GSBRawdumpHeaderVLBIHeaderBase GSBPhasedHeader

TimeFormat TimeUnique TimeGSBTimeString

10.3.3 baseband.gsb.payload Module

Definitions for GSB payloads.

Implements a GSBPayload class used to store payload blocks, and decode to or encode from a data array.

See http://gmrt.ncra.tifr.res.in/gmrt_hpage/sub_system/gmrt_gsb/index.htm

348 Chapter 10. GSB

https://docs.python.org/3/library/constants.html#True
http://gmrt.ncra.tifr.res.in/gmrt_hpage/sub_system/gmrt_gsb/index.htm


baseband Documentation, Release 3.1.0

Classes

GSBPayload(words[, sample_shape, bps, . . . ]) Container for decoding and encoding GSB payloads.

GSBPayload

class baseband.gsb.payload.GSBPayload(words, sample_shape=(), bps=2, complex_data=False)
Bases: baseband.vlbi_base.payload.VLBIPayloadBase

Container for decoding and encoding GSB payloads.

Parameters

words
[ndarray] Array containg LSB unsigned words (with the right size) that encode the payload.

sample_shape
[tuple, optional] Shape of the samples; e.g., (nchan,). Default: ().

bps
[int, optional] Bits per elementary sample. Default: 2.

complex_data
[bool, optional] Whether data are complex. Default: False.

Attributes Summary

data Full decoded payload.
dtype Numeric type of the decoded data array.
nbytes Size of the payload in bytes.
ndim Number of dimensions of the decoded data array.
shape Shape of the decoded data array.
size Total number of component samples in the decoded

data array.

Methods Summary

fromdata(data[, header, bps]) Encode data as a payload.
fromfile(fh[, payload_nbytes, nchan, bps, . . . ]) Read payloads from several threads.
tofile(self, fh) Write payload to filehandle.

10.3. Reference/API 349

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#False


baseband Documentation, Release 3.1.0

Attributes Documentation

data
Full decoded payload.

dtype
Numeric type of the decoded data array.

nbytes
Size of the payload in bytes.

ndim
Number of dimensions of the decoded data array.

shape
Shape of the decoded data array.

size
Total number of component samples in the decoded data array.

Methods Documentation

classmethod fromdata(data, header=None, bps=2)
Encode data as a payload.

Parameters

data
[ndarray] Data to be encoded. The last dimension is taken as the number of channels.

header
[header instance, optional] If given, used to infer the bps.

bps
[int, optional] Bits per elementary sample, i.e., per channel and per real or imaginary
component, used if header is not given. Default: 2.

classmethod fromfile(fh, payload_nbytes=None, nchan=1, bps=4, complex_data=False)
Read payloads from several threads.

Parameters

fh
[filehandle or tuple of tuple of filehandle] Handles to the sets of files from which data
are read. The outer tuple holds distinct threads, while the inner ones holds parts of those
threads. Typically, these are the two polarisations and the two parts of each in which
phased baseband data are stored.

payload_nbytes
[int] Number of bytes to read from each part.

nchan
[int, optional] Number of channels. Default: 1.

bps
[int, optional] Bits per elementary sample. Default: 4.

complex_data
[bool, optional] Whether data are complex. Default: False.

350 Chapter 10. GSB

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#False


baseband Documentation, Release 3.1.0

tofile(self, fh)
Write payload to filehandle.

Class Inheritance Diagram

GSBPayloadVLBIPayloadBase

10.3.4 baseband.gsb.frame Module

Classes

GSBFrame(header, payload[, valid, verify]) Frame encapsulating GSB rawdump or phased data.

GSBFrame

class baseband.gsb.frame.GSBFrame(header, payload, valid=True, verify=True)
Bases: baseband.vlbi_base.frame.VLBIFrameBase

Frame encapsulating GSB rawdump or phased data.

For rawdump data, lines in the timestamp file are associated with single blocks of raw data. For phased data,
the lines are associated with one or two polarisations, each consisting of two blocks of raw data. Hence, the raw
data come from two or four files.

Parameters

header
[GSBHeader] Based on line from rawdump or phased timestamp file.

payload
[GSBPayload] Based on a single block of rawdump data, or the combined blocks for phased
data.

valid
[bool, optional] Whether the data are valid. Default: True.

verify
[bool, optional] Whether to verify consistency of the frame parts. Default: True.

10.3. Reference/API 351

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Notes

GSB files do not support storing whether data are valid or not on disk. Hence, this has to be determined
independently. If valid=False, any decoded data are set to cls.fill_value (by default, 0).

The Frame can also be read instantiated using class methods:

fromfile : read header and payload from their respective filehandles

fromdata : encode data as payload

Of course, one can also do the opposite:

tofile
[method to write header and payload to filehandles (splitting] payload in the appropriate files).

data : property that yields full decoded payload

A number of properties are defined: shape, dtype and size are the shape, type and number of complete samples
of the data array, and nbytes the frame size in bytes. Furthermore, the frame acts as a dictionary, with keys
those of the header. Any attribute that is not defined on the frame itself, such as .time will be looked up on the
header as well.

Attributes Summary

data Full decoded frame.
dtype Numeric type of the frame data.
fill_value Value to replace invalid data in the frame.
nbytes Size of the encoded frame in the raw data file in

bytes.
ndim Number of dimensions of the frame data.
sample_shape Shape of a sample in the frame (nchan,).
shape Shape of the frame data.
size Total number of component samples in the frame

data.
valid Whether frame contains valid data.

Methods Summary

fromdata(data, header, \*args[, valid, verify]) Construct frame from data and header.
fromfile(fh_ts, fh_raw[, payload_nbytes, . . . ]) Read a frame from timestamp and raw data filehan-

dles.
keys(self)
tofile(self, fh_ts, fh_raw) Write encoded frame to timestamp and raw data file-

handles.
verify(self) Simple verification.

352 Chapter 10. GSB



baseband Documentation, Release 3.1.0

Attributes Documentation

data
Full decoded frame.

dtype
Numeric type of the frame data.

fill_value
Value to replace invalid data in the frame.

nbytes
Size of the encoded frame in the raw data file in bytes.

ndim
Number of dimensions of the frame data.

sample_shape
Shape of a sample in the frame (nchan,).

shape
Shape of the frame data.

size
Total number of component samples in the frame data.

valid
Whether frame contains valid data.

Methods Documentation

classmethod fromdata(data, header, *args, valid=True, verify=True, **kwargs)
Construct frame from data and header.

Parameters

data
[ndarray] Array holding data to be encoded.

header
[VLBIHeaderBase] Header for the frame.

*args, **kwargs :
Any arguments beyond the filehandle are used to help initialize the payload, except for
valid and verify, which are passed on to the header and class initializers.

valid
[bool, optional] Whether this payload contains valid data.

verify
[bool, optional] Whether to verify the header and frame correctness.

classmethod fromfile(fh_ts, fh_raw, payload_nbytes=16777216, nchan=1, bps=4, com-
plex_data=False, valid=True, verify=True)

Read a frame from timestamp and raw data filehandles.

Any arguments beyond the filehandle are used to help initialize the payload, except for valid and verify,
which are passed on to the header and class initializers.

Parameters

10.3. Reference/API 353

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


baseband Documentation, Release 3.1.0

fh_ts
[filehandle] To the timestamp file. The next line will be read.

fh_raw
[file_handle or tuple] Should be a single handle for a rawdump data frame, or a tuple
containing tuples with pairs of handles for a phased one. E.g., ((L1, L2), (R1, R2))
for left and right polarisations.

payload_nbytes
[int, optional] Size of the individual payloads in bytes. Default: 2**24 (16 MB).

nchan
[int, optional] Number of channels. Default: 1.

bps
[int, optional] Bits per elementary sample. Default: 4.

complex_data
[bool, optional] Whether data are complex. Default: False.

valid
[bool, optional] Whether the data are valid (default: True). Note that this cannot be in-
ferred from the header or payload itself. If False, any data read will be set to cls.
fill_value.

verify
[bool, optional] Whether to verify consistency of the frame parts. Default: True.

keys(self)

tofile(self, fh_ts, fh_raw)
Write encoded frame to timestamp and raw data filehandles.

Parameters

fh_ts
[filehandle] To the timestamp file. A line will be added to it.

fh_raw
[file_handle or tuple] Should be a single handle for a rawdump data frame, or a tuple
containing tuples with pairs of handles for a phased one. E.g., ((L1, L2), (R1, R2))
for left and right polarisations.

verify(self)
Simple verification. To be added to by subclasses.

Class Inheritance Diagram

GSBFrameVLBIFrameBase

354 Chapter 10. GSB

https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

10.3.5 baseband.gsb.base Module

Functions

open(name[, mode]) Open GSB file(s) for reading or writing.

open

baseband.gsb.base.open(name, mode='rs', **kwargs)
Open GSB file(s) for reading or writing.

A GSB data set contains a text header file and one or more raw data files. When the file is opened as text,
one gets a standard filehandle, but with methods to read/write timestamps. When it is opened as a binary, one
similarly gets methods to read/write frames. Opened as a stream, the file is interpreted as a timestamp file, but
raw files need to be given too. This allows access to the stream(s) as series of samples.

Parameters

name
[str] Filename of timestamp or raw data file.

mode
[{‘rb’, ‘wb’, ‘rt’, ‘wt’, ‘rs’, or ‘ws’}, optional] Whether to open for reading or writing, and
as a regular text or binary file (for timestamps and data, respectively) or as a stream. Default:
‘rs’, for reading a stream.

**kwargs
Additional arguments when opening the file as a stream.

— For both reading and writing of streams :

raw
[str or (tuple of) tuple of str] Name of files holding payload data. A single file is needed
for rawdump, and a tuple for phased. For a nested tuple, the outer tuple determines the
number of polarizations, and the inner tuple(s) the number of streams per polarization. E.g.,
((polL1, polL2), (polR1, polR2)) for two streams per polarization. A single tuple is
interpreted as streams of a single polarization.

sample_rate
[Quantity, optional] Number of complete samples per second, i.e. the rate at which each
channel of each polarization is sampled. If None, will be inferred assuming the frame rate is
exactly 251.658240 ms.

samples_per_frame
[int, optional] Number of complete samples per frame. Can give payload_nbytes instead.

payload_nbytes
[int, optional] Number of bytes per payload, divided by the number of raw files. If both
samples_per_frame and payload_nbytes are None, payload_nbytes is set to 2**22 (4
MB) for rawdump, and 2**23 (8 MB) divided by the number of streams per polarization for
phased.

nchan
[int, optional] Number of channels. Default: 1 for rawdump, 512 for phased.

10.3. Reference/API 355

http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None


baseband Documentation, Release 3.1.0

bps
[int, optional] Bits per elementary sample, i.e. per real or imaginary component for complex
data. Default: 4 for rawdump, 8 for phased.

complex_data
[bool, optional] Whether data are complex. Default: False for rawdump, True for phased.

squeeze
[bool, optional] If True (default) and reading, remove any dimensions of length unity from
decoded data. If True and writing, accept squeezed arrays as input, and adds any dimensions
of length unity.

— For reading only
[(see GSBStreamReader)]

subset
[indexing object or tuple of objects, optional] Specific components of the complete sample
to decode (after possibly squeezing). If a single indexing object is passed, it selects (avail-
able) polarizations. If a tuple is passed, the first selects polarizations and the second selects
channels. If the tuple is empty (default), all components are read.

verify
[bool, optional] Whether to do basic checks of frame integrity when reading. The first frame
of the stream is always checked. Default: True.

— For writing only
[(see GSBStreamWriter)]

header0
[GSBHeader] Header for the first frame, holding time information, etc. Can instead give
keyword arguments to construct a header.

**kwargs
If the header is not given, an attempt will be made to construct one with any further keyword
arguments. If one requires to explicitly set the mode of the GSB stream, use header_mode.
If not given, it will be ‘rawdump’ if only a single raw file is present, or ‘phased’ otherwise.
See GSBStreamWriter.

Returns

Filehandle
GSBFileReader or GSBFileWriter (binary), or GSBStreamReader or GSBStreamWriter
(stream)

Classes

GSBTimeStampIO(fh_raw) Simple reader/writer for GSB time stamp files.
GSBFileReader(fh_raw, payload_nbytes[, . . . ]) Simple reader for GSB data files.
GSBFileWriter(fh_raw) Simple writer for GSB data files.
GSBStreamBase(fh_ts, fh_raw, header0[, . . . ]) Base for GSB streams.
GSBStreamReader(fh_ts, fh_raw[, . . . ]) GSB format reader.
GSBStreamWriter(fh_ts, fh_raw[, header0, . . . ]) GSB format writer.

356 Chapter 10. GSB

https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

GSBTimeStampIO

class baseband.gsb.base.GSBTimeStampIO(fh_raw)
Bases: baseband.vlbi_base.base.VLBIFileBase

Simple reader/writer for GSB time stamp files.

Wraps a binary filehandle, providing methods read_timestamp, write_timestamp, and get_frame_rate.

Parameters

fh_raw
[filehandle] Filehandle to the timestamp file, opened in binary mode.

Attributes Summary

info()

Methods Summary

close(self)
get_frame_rate(self) Determine the number of frames per second.
read_timestamp(self) Read a single timestamp.
temporary_offset(self) Context manager for temporarily seeking to another

file position.
write_timestamp(self[, header]) Write a single timestamp.

Attributes Documentation

info

Methods Documentation

close(self)

get_frame_rate(self)
Determine the number of frames per second.

The frame rate is inferred from the first two timestamps.

Returns

frame_rate
[Quantity] Frames per second.

read_timestamp(self)
Read a single timestamp.

Returns

10.3. Reference/API 357

http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity


baseband Documentation, Release 3.1.0

frame
[GSBHeader] With a .time property that returns the time encoded.

temporary_offset(self)
Context manager for temporarily seeking to another file position.

To be used as part of a with statement:

with fh_raw.temporary_offset() [as fh_raw]:
with-block

On exiting the with-block, the file pointer is moved back to its original position.

write_timestamp(self, header=None, **kwargs)
Write a single timestamp.

Parameters

header
[GSBHeader, optional] Header holding time to be written to disk. Can instead give key-
word arguments to construct a header.

**kwargs :
If header is not given, these are used to initialize one.

GSBFileReader

class baseband.gsb.base.GSBFileReader(fh_raw, payload_nbytes, nchan=1, bps=4, com-
plex_data=False)

Bases: baseband.vlbi_base.base.VLBIFileBase

Simple reader for GSB data files.

Wraps a binary filehandle, providing a read_payload method to help interpret the data.

Parameters

payload_nbytes
[int] Number of bytes to read.

nchan
[int, optional] Number of channels. Default: 1.

bps
[int, optional] Bits per elementary sample, i.e. per real or imaginary component for complex
data. Default: 4.

complex_data
[bool, optional] Whether data are complex. Default: False.

358 Chapter 10. GSB

https://docs.python.org/3/library/constants.html#False


baseband Documentation, Release 3.1.0

Methods Summary

close(self)
read_payload(self) Read a single block.
temporary_offset(self) Context manager for temporarily seeking to another

file position.

Methods Documentation

close(self)

read_payload(self)
Read a single block.

Returns

frame
[GSBPayload] With a .data property that returns the data encoded.

temporary_offset(self)
Context manager for temporarily seeking to another file position.

To be used as part of a with statement:

with fh_raw.temporary_offset() [as fh_raw]:
with-block

On exiting the with-block, the file pointer is moved back to its original position.

GSBFileWriter

class baseband.gsb.base.GSBFileWriter(fh_raw)
Bases: baseband.vlbi_base.base.VLBIFileBase

Simple writer for GSB data files.

Adds write_payload method to the basic VLBI binary file wrapper.

Methods Summary

close(self)
temporary_offset(self) Context manager for temporarily seeking to another

file position.
write_payload(self, data[, bps]) Write single data block.

10.3. Reference/API 359



baseband Documentation, Release 3.1.0

Methods Documentation

close(self)

temporary_offset(self)
Context manager for temporarily seeking to another file position.

To be used as part of a with statement:

with fh_raw.temporary_offset() [as fh_raw]:
with-block

On exiting the with-block, the file pointer is moved back to its original position.

write_payload(self, data, bps=4)
Write single data block.

Parameters

data
[ndarray or GSBPayload] If an array, bps needs to be passed in.

bps
[int, optional] Bits per elementary sample, to use when encoding the payload. Ignored if
data is a GSB payload. Default: 4.

GSBStreamBase

class baseband.gsb.base.GSBStreamBase(fh_ts, fh_raw, header0, sample_rate=None, sam-
ples_per_frame=None, payload_nbytes=None, nchan=None,
bps=None, complex_data=None, squeeze=True, subset=(),
verify=True)

Bases: baseband.vlbi_base.base.VLBIStreamBase

Base for GSB streams.

Attributes Summary

bps Bits per elementary sample.
complex_data Whether the data are complex.
header0 First header of the file.
sample_rate Number of complete samples per second.
sample_shape Shape of a complete sample (possibly subset or

squeezed).
samples_per_frame Number of complete samples per frame.
squeeze Whether data arrays have dimensions with length

unity removed.
start_time Start time of the file.
subset Specific components of the complete sample to de-

code.
time Time of the sample pointer’s current offset in file.

Continued on next page

360 Chapter 10. GSB

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


baseband Documentation, Release 3.1.0

Table 30 – continued from previous page
verify Whether to do consistency checks on frames being

read.

Methods Summary

close(self)
tell(self[, unit]) Current offset in the file.

Attributes Documentation

bps
Bits per elementary sample.

complex_data
Whether the data are complex.

header0
First header of the file.

sample_rate
Number of complete samples per second.

sample_shape
Shape of a complete sample (possibly subset or squeezed).

samples_per_frame
Number of complete samples per frame.

squeeze
Whether data arrays have dimensions with length unity removed.

If True, data read out has such dimensions removed, and data passed in for writing has them inserted.

start_time
Start time of the file.

See also time for the time of the sample pointer’s current offset.

subset
Specific components of the complete sample to decode.

The order of dimensions is the same as for sample_shape. Set by the class initializer.

time
Time of the sample pointer’s current offset in file.

See also start_time for the start time of the file.

verify
Whether to do consistency checks on frames being read.

10.3. Reference/API 361

https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Methods Documentation

close(self)

tell(self, unit=None)
Current offset in the file.

Parameters

unit
[Unit or str, optional] Time unit the offset should be returned in. By default, no unit is
used, i.e., an integer enumerating samples is returned. For the special string ‘time’, the
absolute time is calculated.

Returns

offset
[int, Quantity, or Time] Offset in current file (or time at current position).

GSBStreamReader

class baseband.gsb.base.GSBStreamReader(fh_ts, fh_raw, sample_rate=None, sam-
ples_per_frame=None, payload_nbytes=None,
nchan=None, bps=None, complex_data=None,
squeeze=True, subset=(), verify=True)

Bases: baseband.gsb.base.GSBStreamBase, baseband.vlbi_base.base.VLBIStreamReaderBase

GSB format reader.

Allows access to GSB files as a continuous series of samples. Requires both a timestamp and one or more
corresponding raw data files.

Parameters

fh_ts
[GSBTimeStampIO] Header filehandle.

fh_raw
[filehandle, or nested tuple of filehandles] Raw binary data filehandle(s). A single file is
needed for rawdump, and a tuple for phased. For a nested tuple, the outer tuple determines
the number of polarizations, and the inner tuple(s) the number of streams per polarization.
E.g., ((polL1, polL2), (polR1, polR2)) for two streams per polarization. A single
tuple is interpreted as streams of a single polarization.

sample_rate
[Quantity, optional] Number of complete samples per second, i.e. the rate at which each
channel of each polarization is sampled. If None, will be inferred assuming the frame rate is
exactly 0.25165824 s.

samples_per_frame
[int, optional] Number of complete samples per frame. Can give payload_nbytes instead.

payload_nbytes
[int, optional] Number of bytes per payload, divided by the number of raw files. If both
samples_per_frame and payload_nbytes are None, payload_nbytes is set to 2**22 (4

362 Chapter 10. GSB

http://docs.astropy.org/en/stable/api/astropy.units.Unit.html#astropy.units.Unit
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None


baseband Documentation, Release 3.1.0

MB) for rawdump, and 2**23 (8 MB) divided by the number of streams per polarization for
phased.

nchan
[int, optional] Number of channels. Default: 1 for rawdump, 512 for phased.

bps
[int, optional] Bits per elementary sample, i.e. per real or imaginary component for complex
data. Default: 4 for rawdump, 8 for phased.

complex_data
[bool, optional] Whether data are complex. Default: False for rawdump, True for phased.

squeeze
[bool, optional] If True (default), remove any dimensions of length unity from decoded data.

subset
[indexing object or tuple of objects, optional] Specific components of the complete sample
to decode (after possibly squeezing). If a single indexing object is passed, it selects (avail-
able) polarizations. If a tuple is passed, the first selects polarizations and the second selects
channels. If the tuple is empty (default), all components are read.

verify
[bool, optional] Whether to do basic checks of frame integrity when reading. The first frame
of the stream is always checked. Default: True.

Attributes Summary

bps Bits per elementary sample.
complex_data Whether the data are complex.
dtype
fill_value Value to use for invalid or missing data.
header0 First header of the file.
info()
ndim Number of dimensions of the (squeezed/subset)

stream data.
sample_rate Number of complete samples per second.
sample_shape Shape of a complete sample (possibly subset or

squeezed).
samples_per_frame Number of complete samples per frame.
shape Shape of the (squeezed/subset) stream data.
size Total number of component samples in the

(squeezed/subset) stream data.
squeeze Whether data arrays have dimensions with length

unity removed.
start_time Start time of the file.
stop_time Time at the end of the file, just after the last sample.
subset Specific components of the complete sample to de-

code.
time Time of the sample pointer’s current offset in file.
verify Whether to do consistency checks on frames being

read.

10.3. Reference/API 363

https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Methods Summary

close(self)
read(self[, count, out]) Read a number of complete (or subset) samples.
readable(self) Whether the file can be read and decoded.
seek(self, offset[, whence]) Change the stream position.
tell(self[, unit]) Current offset in the file.

Attributes Documentation

bps
Bits per elementary sample.

complex_data
Whether the data are complex.

dtype

fill_value
Value to use for invalid or missing data. Default: 0.

header0
First header of the file.

info

ndim
Number of dimensions of the (squeezed/subset) stream data.

sample_rate
Number of complete samples per second.

sample_shape
Shape of a complete sample (possibly subset or squeezed).

samples_per_frame
Number of complete samples per frame.

shape
Shape of the (squeezed/subset) stream data.

size
Total number of component samples in the (squeezed/subset) stream data.

squeeze
Whether data arrays have dimensions with length unity removed.

If True, data read out has such dimensions removed, and data passed in for writing has them inserted.

start_time
Start time of the file.

See also time for the time of the sample pointer’s current offset, and (if available) stop_time for the time
at the end of the file.

stop_time
Time at the end of the file, just after the last sample.

364 Chapter 10. GSB

https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

See also start_time for the start time of the file, and time for the time of the sample pointer’s current
offset.

subset
Specific components of the complete sample to decode.

The order of dimensions is the same as for sample_shape. Set by the class initializer.

time
Time of the sample pointer’s current offset in file.

See also start_time for the start time, and (if available) stop_time for the end time, of the file.

verify
Whether to do consistency checks on frames being read.

Methods Documentation

close(self)

read(self, count=None, out=None)
Read a number of complete (or subset) samples.

The range retrieved can span multiple frames.

Parameters

count
[int or None, optional] Number of complete/subset samples to read. If None (default) or
negative, the whole file is read. Ignored if out is given.

out
[None or array, optional] Array to store the data in. If given, count will be inferred from
the first dimension; the other dimension should equal sample_shape.

Returns

out
[ndarray of float or complex] The first dimension is sample-time, and the remainder given
by sample_shape.

readable(self)
Whether the file can be read and decoded.

seek(self, offset, whence=0)
Change the stream position.

This works like a normal filehandle seek, but the offset is in samples (or a relative or absolute time).

Parameters

offset
[int, Quantity, or Time] Offset to move to. Can be an (integer) number of samples, an
offset in time units, or an absolute time.

whence
[{0, 1, 2, ‘start’, ‘current’, or ‘end’}, optional] Like regular seek, the offset is taken to be
from the start if whence=0 (default), from the current position if 1, and from the end if 2.

10.3. Reference/API 365

https://docs.python.org/3/library/constants.html#None
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time


baseband Documentation, Release 3.1.0

One can alternativey use ‘start’, ‘current’, or ‘end’ for 0, 1, or 2, respectively. Ignored if
offset is a time.

tell(self, unit=None)
Current offset in the file.

Parameters

unit
[Unit or str, optional] Time unit the offset should be returned in. By default, no unit is
used, i.e., an integer enumerating samples is returned. For the special string ‘time’, the
absolute time is calculated.

Returns

offset
[int, Quantity, or Time] Offset in current file (or time at current position).

GSBStreamWriter

class baseband.gsb.base.GSBStreamWriter(fh_ts, fh_raw, header0=None, sample_rate=None,
samples_per_frame=None, payload_nbytes=None,
nchan=None, bps=None, complex_data=None,
squeeze=True, **kwargs)

Bases: baseband.gsb.base.GSBStreamBase, baseband.vlbi_base.base.VLBIStreamWriterBase

GSB format writer.

Encodes and writes sequences of samples to file.

Parameters

fh_ts
[GSBTimeStampIO] For writing headers to storage.

fh_raw
[filehandle, or nested tuple of filehandles] For writing raw binary data to storage. A single
file is needed for rawdump, and a tuple for phased. For a nested tuple, the outer tuple
determines the number of polarizations, and the inner tuple(s) the number of streams per
polarization. E.g., ((polL1, polL2), (polR1, polR2)) for two streams per polarization.
A single tuple is interpreted as streams of a single polarization.

header0
[GSBHeader] Header for the first frame, holding time information, etc. Can instead give
keyword arguments to construct a header (see **kwargs).

sample_rate
[Quantity, optional] Number of complete samples per second, i.e. the rate at which each
channel of each polarization is sampled. If not given, will be inferred assuming the frame
rate is exactly 0.25165824 s.

samples_per_frame
[int, optional] Number of complete samples per frame. Can give payload_nbytes instead.

payload_nbytes
[int, optional] Number of bytes per payload, divided by the number of raw files. If both
samples_per_frame and payload_nbytes are None, payload_nbytes is set to 2**22 (4

366 Chapter 10. GSB

http://docs.astropy.org/en/stable/api/astropy.units.Unit.html#astropy.units.Unit
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
https://docs.python.org/3/library/constants.html#None


baseband Documentation, Release 3.1.0

MB) for rawdump, and 2**23 (8 MB) divided by the number of streams per polarization for
phased.

nchan
[int, optional] Number of channels. Default: 1 for rawdump, 512 for phased.

bps
[int, optional] Bits per elementary sample, i.e. per real or imaginary component for complex
data. Default: 4 for rawdump, 8 for phased.

complex_data
[bool, optional] Whether data are complex. Default: False for rawdump, True for phased.

squeeze
[bool, optional] If True (default), write accepts squeezed arrays as input, and adds any
dimensions of length unity.

**kwargs
If no header is given, an attempt is made to construct one from these. For a standard header,
this would include the following.

— Header keywords
[(see fromvalues())]

time
[Time] Start time of the file.

header_mode
[‘rawdump’ or ‘phased’, optional] Used to explicitly set the mode of the GSB stream. De-
fault: ‘rawdump’ if only a single raw file is present, or ‘phased’ otherwise.

seq_nr
[int, optional] Frame number, only used for phased (default: 0).

Attributes Summary

bps Bits per elementary sample.
complex_data Whether the data are complex.
header0 First header of the file.
sample_rate Number of complete samples per second.
sample_shape Shape of a complete sample (possibly subset or

squeezed).
samples_per_frame Number of complete samples per frame.
squeeze Whether data arrays have dimensions with length

unity removed.
start_time Start time of the file.
subset Specific components of the complete sample to de-

code.
time Time of the sample pointer’s current offset in file.
verify Whether to do consistency checks on frames being

read.

10.3. Reference/API 367

https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time


baseband Documentation, Release 3.1.0

Methods Summary

close(self)
flush(self)
tell(self[, unit]) Current offset in the file.
write(self, data[, valid]) Write data, buffering by frames as needed.

Attributes Documentation

bps
Bits per elementary sample.

complex_data
Whether the data are complex.

header0
First header of the file.

sample_rate
Number of complete samples per second.

sample_shape
Shape of a complete sample (possibly subset or squeezed).

samples_per_frame
Number of complete samples per frame.

squeeze
Whether data arrays have dimensions with length unity removed.

If True, data read out has such dimensions removed, and data passed in for writing has them inserted.

start_time
Start time of the file.

See also time for the time of the sample pointer’s current offset.

subset
Specific components of the complete sample to decode.

The order of dimensions is the same as for sample_shape. Set by the class initializer.

time
Time of the sample pointer’s current offset in file.

See also start_time for the start time of the file.

verify
Whether to do consistency checks on frames being read.

368 Chapter 10. GSB

https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Methods Documentation

close(self)

flush(self)

tell(self, unit=None)
Current offset in the file.

Parameters

unit
[Unit or str, optional] Time unit the offset should be returned in. By default, no unit is
used, i.e., an integer enumerating samples is returned. For the special string ‘time’, the
absolute time is calculated.

Returns

offset
[int, Quantity, or Time] Offset in current file (or time at current position).

write(self, data, valid=True)
Write data, buffering by frames as needed.

Parameters

data
[ndarray] Piece of data to be written, with sample dimensions as given by sample_shape.
This should be properly scaled to make best use of the dynamic range delivered by the
encoding.

valid
[bool, optional] Whether the current data are valid. Default: True.

10.3. Reference/API 369

http://docs.astropy.org/en/stable/api/astropy.units.Unit.html#astropy.units.Unit
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Class Inheritance Diagram

GSBFileReader

VLBIFileBase GSBFileWriter

GSBTimeStampIO

GSBStreamBase

GSBStreamReader

GSBStreamWriter

VLBIStreamBase

VLBIStreamReaderBase

VLBIStreamWriterBase

370 Chapter 10. GSB



Part III

Core Framework and Utilities

371





baseband Documentation, Release 3.1.0

These sections contain APIs and usage notes for the sequential file opener, the API for the set of core utility functions
and classes located in vlbi_base, and sample data that come with baseband (mostly used for testing).

373



baseband Documentation, Release 3.1.0

374



CHAPTER

ELEVEN

BASEBAND HELPERS

Helpers assist with reading and writing all file formats. Currently, they only include the sequentialfile module for
reading a sequence of files as a single one.

11.1 Sequential File

The sequentialfile module is for reading from and writing to a sequence of files as if they were a single, contiguous
one. Like with file formats, there is a master sequentialfile.open function to open sequences either for reading or
writing. It returns sequential file objects that have read, write, seek, tell, and close methods that work identically
to their single file object counterparts. They additionally have memmap methods to read or write to files through numpy.
memmap.

It is usually unnecessary to directly access sequentialfile, since it is used by baseband.open and all format openers
(except GSB) whenever a sequence of files is passed - see the Using Baseband documentation for details. For finer
control of file opening, however, one may manually create a sequentialfile object, then pass it to an opener.

To illustrate, we rewrite the multi-file example from Using Baseband. We first load the required data:

>>> from baseband import vdif
>>> from baseband.data import SAMPLE_VDIF
>>> import numpy as np
>>> fh = vdif.open(SAMPLE_VDIF, 'rs')
>>> d = fh.read()

We now create a sequence of filenames and calculate the byte size per file, then pass these to open:

>>> from baseband.helpers import sequentialfile as sf
>>> filenames = ["seqvdif_{0}".format(i) for i in range(2)]
>>> file_size = fh.fh_raw.seek(0, 2) // 2
>>> fwr = sf.open(filenames, mode='w+b', file_size=file_size)

The first argument passed to open must be a time-ordered sequence of filenames in a list, tuple, or other container
that returns IndexError when the index is out of bounds. The read mode is ‘w+b’ (a requirement of all format openers
just in case they use numpy.memmap), and file_size determines the largest size a file may reach before the next one
in the sequence is opened for writing. We set file_size such that each file holds exactly one frameset.

To write the data, we pass fwr to vdif.open:

>>> fw = vdif.open(fwr, 'ws', header0=fh.header0,
... sample_rate=fh.sample_rate,
... nthread=fh.sample_shape.nthread)
>>> fw.write(d)
>>> fw.close() # This implicitly closes fwr.

375

https://docs.scipy.org/doc/numpy/reference/generated/numpy.memmap.html#numpy.memmap
https://docs.scipy.org/doc/numpy/reference/generated/numpy.memmap.html#numpy.memmap
https://docs.scipy.org/doc/numpy/reference/generated/numpy.memmap.html#numpy.memmap


baseband Documentation, Release 3.1.0

To read the sequence and confirm their contents are identical to the sample file’s, we may again use open:

>>> frr = sf.open(filenames, mode='rb')
>>> fr = vdif.open(frr, 'rs', sample_rate=fh.sample_rate)
>>> fr.header0.time == fh.header0.time
True
>>> np.all(fr.read() == d)
True
>>> fr.close()
>>> fh.close() # Close sample file.

11.2 Reference/API

11.2.1 baseband.helpers Package

11.2.2 baseband.helpers.sequentialfile Module

Functions

open(files[, mode, file_size, opener]) Read or write several files as if they were one contigu-
ous one.

open

baseband.helpers.sequentialfile.open(files, mode='rb', file_size=None, opener=None)
Read or write several files as if they were one contiguous one.

Parameters

files
[list, tuple, or other iterable of str, filehandle] Contains the names of the underlying files that
should be combined, ordered in time. If not a list or tuple, it should allow indexing with
positive indices, and raise IndexError if these are out of range.

mode
[str, optional] The mode with which the files should be opened (default: ‘rb’).

file_size
[int, optional] For writing, the maximum size of a file, beyond which a new file should be
opened. Default: None, which means it is unlimited and only a single file will be written.

opener
[callable, optional] Function to open a single file (default: io.open).

376 Chapter 11. Baseband Helpers

https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/io.html#io.open


baseband Documentation, Release 3.1.0

Notes

The returned reader/writer will have a memmap method with which part of the files can be mapped to memory
(like with memmap), as long as those parts do not span files (and the underlying files are regular ones). For
writing, this requires opening in read-write mode (i.e., ‘w+b’).

Methods other than read, write, seek, tell, and close are tried on the underlying file. This implies, e.g.,
readline is possible, though the line cannot span multiple files.

The reader assumes the sequence of files is contiguous in time, ie. with no gaps in the data.

Classes

FileNameSequencer(template[, header]) List-like generator of filenames using a template.
SequentialFileBase(files[, mode, opener]) Deal with several files as if they were one contiguous

one.
SequentialFileReader(files[, mode, opener]) Read several files as if they were one contiguous one.
SequentialFileWriter(files[, mode, . . . ]) Write several files as if they were one contiguous one.

FileNameSequencer

class baseband.helpers.sequentialfile.FileNameSequencer(template, header={})
Bases: object

List-like generator of filenames using a template.

The template is formatted, filling in any items in curly brackets with values from the header. It is additionally
possible to insert a file number equal to the indexing value, indicated with ‘{file_nr}’.

The length of the instance will be the number of files that exist that match the template for increasing values of
the file number (when writing, it is the number of files that have so far been generated).

Parameters

template
[str] Template to format to get specific filenames. Curly bracket item keywords are case-
sensitive (eg. ‘{FRAME_NR}’ or ‘{Frame_NR}’ will not use header['frame_nr'].

header
[dict-like] Structure holding key’d values that are used to fill in the format.

Examples

>>> from baseband import vdif
>>> from baseband.helpers import sequentialfile as sf
>>> vfs = sf.FileNameSequencer('a{file_nr:03d}.vdif')
>>> vfs[10]
'a010.vdif'
>>> from baseband.data import SAMPLE_VDIF
>>> with vdif.open(SAMPLE_VDIF, 'rb') as fh:
... header = vdif.VDIFHeader.fromfile(fh)
>>> vfs = sf.FileNameSequencer('obs.edv{edv:d}.{file_nr:05d}.vdif', header)
>>> vfs[10]
'obs.edv3.00010.vdif'

11.2. Reference/API 377

https://docs.scipy.org/doc/numpy/reference/generated/numpy.memmap.html#numpy.memmap
https://docs.python.org/3/library/functions.html#object


baseband Documentation, Release 3.1.0

SequentialFileBase

class baseband.helpers.sequentialfile.SequentialFileBase(files, mode='rb', opener=None)
Bases: object

Deal with several files as if they were one contiguous one.

For details, see SequentialFileReader and SequentialFileWriter.

Methods Summary

close(self) Close the currently open local file, and therewith the
set.

memmap(self[, dtype, mode, offset, shape, order]) Map part of the file in memory.
tell(self) Return the current stream position.

Methods Documentation

close(self)
Close the currently open local file, and therewith the set.

memmap(self, dtype=<class 'numpy.uint8'>, mode=None, offset=None, shape=None, order='C')
Map part of the file in memory.

Note that the map cannnot span multiple underlying files. Parameters are as for memmap.

tell(self)
Return the current stream position.

SequentialFileReader

class baseband.helpers.sequentialfile.SequentialFileReader(files, mode='rb', opener=None)
Bases: baseband.helpers.sequentialfile.SequentialFileBase

Read several files as if they were one contiguous one.

Parameters

files
[list, tuple, or other iterable of str, filehandle] The contains the names of the underlying files
that should be combined. If not a list or tuple, it should allow indexing with positive indices,
and raise IndexError if these are out of range.

mode
[str, optional] The mode with which the files should be opened (default: ‘rb’)

opener
[callable, optional] Function to open a single file (default: io.open).

378 Chapter 11. Baseband Helpers

https://docs.python.org/3/library/functions.html#object
https://docs.scipy.org/doc/numpy/reference/generated/numpy.memmap.html#numpy.memmap
https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/io.html#io.open


baseband Documentation, Release 3.1.0

Attributes Summary

file_size Size of the underlying file currently open for reading.
size Size of all underlying files combined.

Methods Summary

close(self) Close the currently open local file, and therewith the
set.

memmap(self[, dtype, mode, offset, shape, order]) Map part of the file in memory.
read(self[, count]) Read and return up to n bytes.
seek(self, offset[, whence]) Change stream position.
tell(self) Return the current stream position.

Attributes Documentation

file_size
Size of the underlying file currently open for reading.

size
Size of all underlying files combined.

Methods Documentation

close(self)
Close the currently open local file, and therewith the set.

memmap(self, dtype=<class 'numpy.uint8'>, mode=None, offset=None, shape=None, order='C')
Map part of the file in memory.

Note that the map cannnot span multiple underlying files. Parameters are as for memmap.

read(self, count=None)
Read and return up to n bytes.

If the argument is omitted, None, or negative, reads and returns all data until EOF.

If the argument is positive, and the underlying raw stream is not ‘interactive’, multiple raw reads may be
issued to satisfy the byte count (unless EOF is reached first). But for interactive raw streams (as well as
sockets and pipes), at most one raw read will be issued, and a short result does not imply that EOF is
imminent.

Returns an empty bytes object on EOF.

Returns None if the underlying raw stream was open in non-blocking mode and no data is available at the
moment.

seek(self, offset, whence=0)
Change stream position.

Change the stream position to the given byte offset. The offset is interpreted relative to the position
indicated by whence. Values for whence are:

• 0 – start of stream (the default); offset should be zero or positive

11.2. Reference/API 379

https://docs.scipy.org/doc/numpy/reference/generated/numpy.memmap.html#numpy.memmap


baseband Documentation, Release 3.1.0

• 1 – current stream position; offset may be negative

• 2 – end of stream; offset is usually negative

Return the new absolute position.

tell(self)
Return the current stream position.

SequentialFileWriter

class baseband.helpers.sequentialfile.SequentialFileWriter(files, mode='w+b', file_size=None,
opener=None)

Bases: baseband.helpers.sequentialfile.SequentialFileBase

Write several files as if they were one contiguous one.

Note that the file is not seekable and readable.

Parameters

files
[list, tuple, or other iterable of str, filehandle] The contains the names of the underlying files
that should be combined. If not a list or tuple, it should allow indexing with positive indices
(e.g., returning a name as derived from a template). It should raise raise IndexError if the
index is out of range.

mode
[str, optional] The mode with which the files should be opened (default: ‘w+b’). If this does
not include ‘+’ for reading, memory maps are not possibe.

file_size
[int, optional] The maximum size a file is allowed to have. Default: None, which means it is
unlimited and only a single file will be written (making using this class somewhat pointless).

opener
[callable, optional] Function to open a single file (default: io.open).

Methods Summary

close(self) Close the currently open local file, and therewith the
set.

memmap(self[, dtype, mode, offset, shape, order]) Map part of the file in memory.
tell(self) Return the current stream position.
write(self, data) Write the given buffer to the IO stream.

380 Chapter 11. Baseband Helpers

https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/io.html#io.open


baseband Documentation, Release 3.1.0

Methods Documentation

close(self)
Close the currently open local file, and therewith the set.

memmap(self, dtype=<class 'numpy.uint8'>, mode=None, offset=None, shape=None, order='C')
Map part of the file in memory. Cannnot span file boundaries.

tell(self)
Return the current stream position.

write(self, data)
Write the given buffer to the IO stream.

Returns the number of bytes written, which is always the length of b in bytes.

Raises BlockingIOError if the buffer is full and the underlying raw stream cannot accept more data at the
moment.

Class Inheritance Diagram

FileNameSequencer

SequentialFileBase

SequentialFileReader

SequentialFileWriter

11.2. Reference/API 381



baseband Documentation, Release 3.1.0

382 Chapter 11. Baseband Helpers



CHAPTER

TWELVE

VLBI BASE

Routines on which the readers and writers for specific VLBI formats are based.

12.1 Reference/API

12.1.1 baseband.vlbi_base Package

12.1.2 baseband.vlbi_base.header Module

Base definitions for VLBI Headers, used for VDIF and Mark 5B.

Defines a header class VLBIHeaderBase that can be used to hold the words corresponding to a frame header, providing
access to the values encoded in via a dict-like interface. Definitions for headers are constructed using the HeaderParser
class.

Functions

make_parser(word_index, bit_index, bit_length) Construct a function that converts specific bits from a
header.

make_setter(word_index, bit_index, bit_length) Construct a function that uses a value to set specific bits
in a header.

get_default(word_index, bit_index, bit_length) Return the default value from a header keyword.

make_parser

baseband.vlbi_base.header.make_parser(word_index, bit_index, bit_length, default=None)
Construct a function that converts specific bits from a header.

The function acts on a tuple/array of 32-bit words, extracting given bits from a specific word and convert them
to bool (for single bit) or integer.

The parameters are those that define header keywords, and all parsers do (words[word_index] >> bit_index)
& ((1 << bit_length) - 1), except that that they have been optimized for the specific cases of single bits,
full words, and items starting at bit 0. As a special case, bit_length=64 allows one to extract two words as a
single (long) integer.

Parameters

383



baseband Documentation, Release 3.1.0

word_index
[int] Index into the tuple of words passed to the function.

bit_index
[int] Index to the starting bit of the part to be extracted.

bit_length
[int] Number of bits to be extracted.

Returns

parser
[function] To be used as parser(words).

make_setter

baseband.vlbi_base.header.make_setter(word_index, bit_index, bit_length, default=None)
Construct a function that uses a value to set specific bits in a header.

The function will act on a tuple/array of words, setting given bits from a given word using a value.

The parameters are just those that define header keywords.

Parameters

word_index
[int] Index into the tuple of words passed to the function.

bit_index
[int] Index to the starting bit of the part to be extracted.

bit_length
[int] Number of bits to be extracted.

default
[int or bool or None] Possible default value to use in function if no default is passed on.

Returns

setter
[function] To be used as setter(words, value).

get_default

baseband.vlbi_base.header.get_default(word_index, bit_index, bit_length, default=None)
Return the default value from a header keyword.

Since it is called with the full description, it just returns the last item, defaulted to None.

384 Chapter 12. VLBI Base

https://docs.python.org/3/library/constants.html#None


baseband Documentation, Release 3.1.0

Classes

fixedvalue(fget[, doc, lazy]) Property that is fixed for all instances of a class.
ParserDict(method[, name, doc]) Create a lazily evaluated dictionary of parsers, setters,

or defaults.
HeaderParser(*args, **kwargs) Parser & setter for VLBI header keywords.
VLBIHeaderBase(words[, verify]) Base class for all VLBI headers.

fixedvalue

class baseband.vlbi_base.header.fixedvalue(fget, doc=None, lazy=False)
Bases: astropy.utils.decorators.classproperty

Property that is fixed for all instances of a class.

Based on astropy.utils.decorators.classproperty, but with a setter that passes if the value is identical to
the fixed value, and otherwise raises a ValueError.

Attributes Summary

fdel
fget
fset

Methods Summary

deleter(self, fdel) Descriptor to change the deleter on a property.
getter(self, fget) Descriptor to change the getter on a property.
setter(self, fset) Descriptor to change the setter on a property.

Attributes Documentation

fdel

fget

fset

12.1. Reference/API 385

http://docs.astropy.org/en/stable/api/astropy.utils.decorators.classproperty.html#astropy.utils.decorators.classproperty
http://docs.astropy.org/en/stable/api/astropy.utils.decorators.classproperty.html#astropy.utils.decorators.classproperty
https://docs.python.org/3/library/exceptions.html#ValueError


baseband Documentation, Release 3.1.0

Methods Documentation

deleter(self, fdel)
Descriptor to change the deleter on a property.

getter(self, fget)
Descriptor to change the getter on a property.

setter(self, fset)
Descriptor to change the setter on a property.

ParserDict

class baseband.vlbi_base.header.ParserDict(method, name=None, doc=None)
Bases: object

Create a lazily evaluated dictionary of parsers, setters, or defaults.

Implemented as a non-data descriptor. When first called on an instance, it will create a dict under its own name
in the instance’s __dict__, which means that any further attribute access will return that dict instead of this
descriptor.

Parameters

method
[str] Name of the method on the instance that can be used to create a parser or setter, or
get the default, based on a header keyword description. Typically one of ‘make_parser’,
‘make_setter’, or ‘get_default’.

name
[str, optional] If not given, inferred from the method name. Typically, ‘parsers’, ‘setters’, or
‘default’. It must match the name the descriptor is assigned to.

doc
[str, optional] Docstring for the instance. Defaults to ‘Lazily evaluated dict of name’.

HeaderParser

class baseband.vlbi_base.header.HeaderParser(*args, **kwargs)
Bases: collections.OrderedDict

Parser & setter for VLBI header keywords.

An ordered dict of header keywords, with values that describe how they are encoded in a given VLBI header.
Initialisation is as a normal OrderedDict, with a key, value pairs. The value should be a tuple containing:

word_index
[int] Index into the header words for this key.

bit_index
[int] Index to the starting bit of the part used for this key.

bit_length
[int] Number of bits.

default
[int or bool or None] Possible default value to use in initialisation (e.g., a sync pattern).

386 Chapter 12. VLBI Base

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/collections.html#collections.OrderedDict


baseband Documentation, Release 3.1.0

The class provides dict-like properties parsers, setters, and defaults, which return functions that get a given
keyword from header words, set the corresponding part of the header words to a value, or return the default value
(if defined). To speed up access to those, they are precalculated on first access rather than calculated on the fly.

By default, the parsers and setters are calculated from the header definitions using make_parser and
make_setter, and the defaults inferred using get_default. Those can be overridden by passing other functions
in as keyword arguments with the same name.

Attributes Summary

defaults Lazily evaluated dict of defaults
parsers Lazily evaluated dict of parsers
setters Lazily evaluated dict of setters

Methods Summary

clear()
copy(self) Make an independent copy.
fromkeys(iterable[, value]) Create a new ordered dictionary with keys from iter-

able and values set to value.
get(self, key[, default]) Return the value for key if key is in the dictionary,

else default.
items()
keys()
move_to_end(self, /, key[, last]) Move an existing element to the end (or beginning if

last is false).
pop() value.
popitem(self, /[, last]) Remove and return a (key, value) pair from the dic-

tionary.
setdefault(self, /, key[, default]) Insert key with a value of default if key is not in the

dictionary.
update() If E is present and has a .keys() method, then does:

for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In
either case, this is followed by: for k in F: D[k] =
F[k]

values()

Attributes Documentation

defaults
Lazily evaluated dict of defaults

parsers
Lazily evaluated dict of parsers

setters
Lazily evaluated dict of setters

12.1. Reference/API 387



baseband Documentation, Release 3.1.0

Methods Documentation

clear()

copy(self)
Make an independent copy.

fromkeys(iterable, value=None)
Create a new ordered dictionary with keys from iterable and values set to value.

get(self, key, default=None, /)
Return the value for key if key is in the dictionary, else default.

items()

keys()

move_to_end(self, /, key, last=True)
Move an existing element to the end (or beginning if last is false).

Raise KeyError if the element does not exist.

pop()
value. If key is not found, d is returned if given, otherwise KeyError is raised.

popitem(self, /, last=True)
Remove and return a (key, value) pair from the dictionary.

Pairs are returned in LIFO order if last is true or FIFO order if false.

setdefault(self, /, key, default=None)
Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

update()
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a
.keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values()

VLBIHeaderBase

class baseband.vlbi_base.header.VLBIHeaderBase(words, verify=True)
Bases: object

Base class for all VLBI headers.

Defines a number of common routines.

Generally, the actual class should define:

_struct : Struct instance that can pack/unpack header words.

_header_parser : HeaderParser instance corresponding to this class.

_properties : tuple of properties accessible/usable in initialisation

_invariants : set of keys of invariant header parts for a given type.

388 Chapter 12. VLBI Base

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/struct.html#struct.Struct


baseband Documentation, Release 3.1.0

_stream_invarants : set of keys of invariant header parts for a stream.

It also should define properties that tell the size (getters and setters, or use a baseband.vlbi_base.header.
fixedvalue if the value is the same for all instances):

payload_nbytes : number of bytes used by payload

frame_nbytes : total number of bytes for header + payload

get_time, set_time, and a corresponding time property :
time at start of payload

Parameters

words
[tuple or list of int, or None] header words (generally, 32 bit unsigned int). If given as a
tuple, the header is immutable. If None, set to a list of zeros for later initialisation (and skip
any verification).

verify
[bool, optional] Whether to do basic verification of integrity. For the base class, checks that
the number of words is consistent with the struct size.

Attributes Summary

mutable Whether the header can be modified.
nbytes Size of the header in bytes.

Methods Summary

copy(self, \*\*kwargs) Create a mutable and independent copy of the header.
fromfile(fh, \*args, \*\*kwargs) Read VLBI Header from file.
fromkeys(\*args, \*\*kwargs) Initialise a header from parsed values.
fromvalues(\*args, \*\*kwargs) Initialise a header from parsed values.
invariant_pattern([invariants]) Pattern and mask shared between headers of a type

or stream.
invariants() Set of keys of invariant header parts.
keys(self) All keys defined for this header.
tofile(self, fh) Write VLBI frame header to filehandle.
update(self, \*[, verify]) Update the header by setting keywords or properties.
verify(self) Verify that the length of the words is consistent.

12.1. Reference/API 389

https://docs.python.org/3/library/constants.html#None


baseband Documentation, Release 3.1.0

Attributes Documentation

mutable
Whether the header can be modified.

nbytes
Size of the header in bytes.

Methods Documentation

copy(self, **kwargs)
Create a mutable and independent copy of the header.

Keyword arguments can be passed on as needed by possible subclasses.

classmethod fromfile(fh, *args, **kwargs)
Read VLBI Header from file.

Arguments are the same as for class initialisation. The header constructed will be immutable.

classmethod fromkeys(*args, **kwargs)
Initialise a header from parsed values.

Like fromvalues, but without any interpretation of keywords.

Raises

KeyError
[if not all keys required are present in kwargs]

classmethod fromvalues(*args, **kwargs)
Initialise a header from parsed values.

Here, the parsed values must be given as keyword arguments, i.e., for any header = cls(<words>),
cls.fromvalues(**header) == header.

However, unlike for the fromkeys class method, data can also be set using arguments named after header
methods, such as time.

Parameters

*args
Possible arguments required to initialize an empty header.

**kwargs
Values used to initialize header keys or methods.

classmethod invariant_pattern(invariants=None, **kwargs)
Pattern and mask shared between headers of a type or stream.

This is mostly for use inside locate_frames().

Parameters

invariants
[set of str, optional] Set of keys to header parts that are shared between all headers of a
given type or within a given stream/file. Default: from invariants().

**kwargs
Keyword arguments needed to instantiate an empty header. (Mostly for Mark 4).

390 Chapter 12. VLBI Base



baseband Documentation, Release 3.1.0

Returns

pattern
[list of int] The pattern that is shared between headers. If called on an instance, just the
header words; if called on a class, words with defaults for the relevant parts set.

mask
[list of int] For each entry in pattern a bit mask with bits set for the parts that are invariant.

classmethod invariants()
Set of keys of invariant header parts.

On the class, this returns keys of parts that are shared by all headers for the type, on an instance, those that
are shared with other headers in the same file.

If neither are defined, returns ‘sync_pattern’ if the header containts that key.

keys(self)
All keys defined for this header.

tofile(self, fh)
Write VLBI frame header to filehandle.

update(self, *, verify=True, **kwargs)
Update the header by setting keywords or properties.

Here, any keywords matching header keys are applied first, and any remaining ones are used to set header
properties, in the order set by the class (in _properties).

Parameters

verify
[bool, optional] If True (default), verify integrity after updating.

**kwargs
Arguments used to set keywords and properties.

verify(self)
Verify that the length of the words is consistent.

Subclasses should override this to do more thorough checks.

12.1. Reference/API 391

https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Class Inheritance Diagram

HeaderParserOrderedDict

ParserDict

VLBIHeaderBase

classproperty fixedvalue

12.1.3 baseband.vlbi_base.payload Module

Base definitions for VLBI payloads, used for VDIF and Mark 5B.

Defines a payload class VLBIPayloadBase that can be used to hold the words corresponding to a frame payload,
providing access to the values encoded in it as a numpy array.

Classes

VLBIPayloadBase(words[, sample_shape, bps, . . . ]) Container for decoding and encoding VLBI payloads.

VLBIPayloadBase

class baseband.vlbi_base.payload.VLBIPayloadBase(words, sample_shape=(), bps=2, com-
plex_data=False)

Bases: object

Container for decoding and encoding VLBI payloads.

Any subclass should define dictionaries _decoders and _encoders, which hold functions that decode/encode
the payload words to/from ndarray. These dictionaries are assumed to be indexed by bps.

Parameters

words
[ndarray] Array containg LSB unsigned words (with the right size) that encode the payload.

sample_shape
[tuple] Shape of the samples (e.g., (nchan,)). Default: ().

bps
[int] Bits per elementary sample, i.e., per channel and per real or imaginary component.

392 Chapter 12. VLBI Base

https://docs.python.org/3/library/functions.html#object
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


baseband Documentation, Release 3.1.0

Default: 2.

complex_data
[bool] Whether the data are complex. Default: False.

Attributes Summary

data Full decoded payload.
dtype Numeric type of the decoded data array.
nbytes Size of the payload in bytes.
ndim Number of dimensions of the decoded data array.
shape Shape of the decoded data array.
size Total number of component samples in the decoded

data array.

Methods Summary

fromdata(data[, header, bps]) Encode data as a payload.
fromfile(fh, \*args[, payload_nbytes]) Read payload from filehandle and decode it into data.
tofile(self, fh) Write payload to filehandle.

Attributes Documentation

data
Full decoded payload.

dtype
Numeric type of the decoded data array.

nbytes
Size of the payload in bytes.

ndim
Number of dimensions of the decoded data array.

shape
Shape of the decoded data array.

size
Total number of component samples in the decoded data array.

Methods Documentation

classmethod fromdata(data, header=None, bps=2)
Encode data as a payload.

Parameters

data
[ndarray] Data to be encoded. The last dimension is taken as the number of channels.

12.1. Reference/API 393

https://docs.python.org/3/library/constants.html#False
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


baseband Documentation, Release 3.1.0

header
[header instance, optional] If given, used to infer the bps.

bps
[int, optional] Bits per elementary sample, i.e., per channel and per real or imaginary
component, used if header is not given. Default: 2.

classmethod fromfile(fh, *args, payload_nbytes=None, **kwargs)
Read payload from filehandle and decode it into data.

Parameters

fh
[filehandle] From which data is read.

payload_nbytes
[int] Number of bytes to read (default: as given in cls._nbytes).

Any other (keyword) arguments are passed on to the class initialiser.

tofile(self, fh)
Write payload to filehandle.

Class Inheritance Diagram

VLBIPayloadBase

12.1.4 baseband.vlbi_base.frame Module

Base definitions for VLBI frames, used for VDIF and Mark 5B.

Defines a frame class VLBIFrameBase that can be used to hold a header and a payload, providing access to the values
encoded in both.

Classes

VLBIFrameBase(header, payload[, valid, verify]) Representation of a VLBI data frame, consisting of a
header and payload.

394 Chapter 12. VLBI Base



baseband Documentation, Release 3.1.0

VLBIFrameBase

class baseband.vlbi_base.frame.VLBIFrameBase(header, payload, valid=True, verify=True)
Bases: object

Representation of a VLBI data frame, consisting of a header and payload.

Parameters

header
[baseband.vlbi_base.header.VLBIHeaderBase] Wrapper around the encoded header
words, providing access to the header information.

payload
[VLBIPayloadBase] Wrapper around the payload, provding mechanisms to decode it.

valid
[bool] Whether the data are valid. Default: True.

verify
[bool] Whether to do basic verification of integrity. Default: True.

Notes

The Frame can also be instantiated using class methods:

fromfile : read header and payload from a filehandle

fromdata : encode data as payload

Of course, one can also do the opposite:

tofile : method to write header and payload to filehandle

data : property that yields full decoded payload

One can decode part of the payload by indexing or slicing the frame. If the frame does not contain valid data,
all values returned are set to self.fill_value.

A number of properties are defined: shape and dtype are the shape and type of the data array, and nbytes the
frame size in bytes. Furthermore, the frame acts as a dictionary, with keys those of the header. Any attribute
that is not defined on the frame itself, such as .time will be looked up on the header as well.

Attributes Summary

data Full decoded frame.
dtype Numeric type of the frame data.
fill_value Value to replace invalid data in the frame.
nbytes Size of the encoded frame in bytes.
ndim Number of dimensions of the frame data.
sample_shape Shape of a sample in the frame (nchan,).
shape Shape of the frame data.
size Total number of component samples in the frame

data.
valid Whether frame contains valid data.

12.1. Reference/API 395

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Methods Summary

fromdata(data, header, \*args[, valid, verify]) Construct frame from data and header.
fromfile(fh, \*args[, valid, verify]) Read a frame from a filehandle.
keys(self)
tofile(self, fh) Write encoded frame to filehandle.
verify(self) Simple verification.

Attributes Documentation

data
Full decoded frame.

dtype
Numeric type of the frame data.

fill_value
Value to replace invalid data in the frame.

nbytes
Size of the encoded frame in bytes.

ndim
Number of dimensions of the frame data.

sample_shape
Shape of a sample in the frame (nchan,).

shape
Shape of the frame data.

size
Total number of component samples in the frame data.

valid
Whether frame contains valid data.

Methods Documentation

classmethod fromdata(data, header, *args, valid=True, verify=True, **kwargs)
Construct frame from data and header.

Parameters

data
[ndarray] Array holding data to be encoded.

header
[VLBIHeaderBase] Header for the frame.

*args, **kwargs :
Any arguments beyond the filehandle are used to help initialize the payload, except for
valid and verify, which are passed on to the header and class initializers.

valid
[bool, optional] Whether this payload contains valid data.

396 Chapter 12. VLBI Base

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray


baseband Documentation, Release 3.1.0

verify
[bool, optional] Whether to verify the header and frame correctness.

classmethod fromfile(fh, *args, valid=True, verify=True, **kwargs)
Read a frame from a filehandle.

Parameters

fh
[filehandle] Handle to read the frame from

*args, **kwargs
Arguments that help to initialize the payload.

valid
[bool] Whether the data are valid. Default: True.

verify
[bool] Whether to do basic verification of integrity. Default: True.

keys(self)

tofile(self, fh)
Write encoded frame to filehandle.

verify(self)
Simple verification. To be added to by subclasses.

Class Inheritance Diagram

VLBIFrameBase

12.1.5 baseband.vlbi_base.base Module

Functions

make_opener(fmt, classes[, doc, append_doc]) Create a baseband file opener.

12.1. Reference/API 397

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

make_opener

baseband.vlbi_base.base.make_opener(fmt, classes, doc='', append_doc=True)
Create a baseband file opener.

Parameters

fmt
[str] Name of the baseband format.

classes
[dict] With the file/stream reader/writer classes keyed by names equal to ‘FileReader’,
‘FileWriter’, ‘StreamReader’, ‘StreamWriter’ prefixed by fmt. Typically, one will pass in
classes=globals().

doc
[str, optional] If given, used to define the docstring of the opener.

append_doc
[bool, optional] If True (default), append doc to the default docstring rather than override
it.

Classes

HeaderNotFoundError Error in finding a header in a stream.
VLBIFileBase(fh_raw) VLBI file wrapper, used to add frame methods to a bi-

nary data file.
VLBIFileReaderBase(fh_raw) VLBI wrapped file reader base class.
VLBIStreamBase(fh_raw, header0, sample_rate, . . . ) VLBI file wrapper, allowing access as a stream of data.
VLBIStreamReaderBase(fh_raw, header0, . . . )
VLBIStreamWriterBase(fh_raw, header0, . . . )

HeaderNotFoundError

exception baseband.vlbi_base.base.HeaderNotFoundError
Error in finding a header in a stream.

VLBIFileBase

class baseband.vlbi_base.base.VLBIFileBase(fh_raw)
Bases: object

VLBI file wrapper, used to add frame methods to a binary data file.

The underlying file is stored in fh_raw and all attributes that do not exist on the class itself are looked up on it.

Parameters

fh_raw
[filehandle] Filehandle of the raw binary data file.

398 Chapter 12. VLBI Base

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#object


baseband Documentation, Release 3.1.0

Methods Summary

close(self)
temporary_offset(self) Context manager for temporarily seeking to another

file position.

Methods Documentation

close(self)

temporary_offset(self)
Context manager for temporarily seeking to another file position.

To be used as part of a with statement:

with fh_raw.temporary_offset() [as fh_raw]:
with-block

On exiting the with-block, the file pointer is moved back to its original position.

VLBIFileReaderBase

class baseband.vlbi_base.base.VLBIFileReaderBase(fh_raw)
Bases: baseband.vlbi_base.base.VLBIFileBase

VLBI wrapped file reader base class.

Typically, a subclass will define read_header, read_frame, and find_header methods. This baseclass in-
cludes a get_frame_rate method which determines the frame rate by scanning the file for headers, look-
ing for the maximum frame number that occurs before the jump down for the next second. This method re-
quires the subclass to define a read_header method and assumes headers have a ‘frame_nr’ item, and define a
payload_nbytes property (as do all standard VLBI formats).

Parameters

fh_raw
[filehandle] Filehandle of the raw binary data file.

Attributes Summary

info() Standardized information on file readers.

12.1. Reference/API 399



baseband Documentation, Release 3.1.0

Methods Summary

close(self)
find_header(self, \*args, \*\*kwargs) Find the nearest header from the current position.
get_frame_rate(self) Determine the number of frames per second.
locate_frames(self, pattern, \*[, mask, . . . ]) Use a pattern to locate frame starts near the current

position.
temporary_offset(self) Context manager for temporarily seeking to another

file position.

Attributes Documentation

info
Standardized information on file readers.

The info descriptor has a number of standard attributes, which are determined from arguments passed in
opening the file, from the first header (info.header0) and from possibly scanning the file to determine
the duration of frames.

Examples

The most common use is simply to print information:

>>> from baseband.data import SAMPLE_MARK5B
>>> from baseband import mark5b
>>> fh = mark5b.open(SAMPLE_MARK5B, 'rb')
>>> fh.info
File information:
format = mark5b
number_of_frames = 4
frame_rate = 6400.0 Hz
bps = 2
complex_data = False
readable = False

missing: nchan: needed to determine sample shape, frame rate, ...
kday, ref_time: needed to infer full times.

>>> fh.close()

>>> fh = mark5b.open(SAMPLE_MARK5B, 'rb', kday=56000, nchan=8)
>>> fh.info
File information:
format = mark5b
number_of_frames = 4
frame_rate = 6400.0 Hz
sample_rate = 32.0 MHz
samples_per_frame = 5000
sample_shape = (8,)
bps = 2
complex_data = False
start_time = 2014-06-13T05:30:01.000000000
readable = True

(continues on next page)

400 Chapter 12. VLBI Base



baseband Documentation, Release 3.1.0

(continued from previous page)

checks: decodable: True
>>> fh.close()

Attributes

format
[str or None] File format, or None if the underlying file cannot be parsed.

number_of_frames
[int] Number of frames in the file.

frame_rate
[Quantity] Number of data frames per unit of time.

sample_rate
[Quantity] Complete samples per unit of time.

samples_per_frame
[int] Number of complete samples in each frame.

sample_shape
[tuple] Dimensions of each complete sample (e.g., (nchan,)).

bps
[int] Number of bits used to encode each elementary sample.

complex_data
[bool] Whether the data are complex.

start_time
[Time] Time of the first complete sample.

readable
[bool] Whether the first sample could be read and decoded.

missing
[dict] Entries are keyed by names of arguments that should be passed to the file reader to
obtain full information. The associated entries explain why these arguments are needed.

checks
[dict] Checks that were done to determine whether the file was readable (normally the only
entry is ‘decodable’).

errors
[dict] Any exceptions raised while trying to determine attributes or doing checks. Keyed
by the attributes/checks.

warnings
[dict] Any warnings about the attributes or about the checks. Keyed by the at-
tributes/checks.

12.1. Reference/API 401

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time


baseband Documentation, Release 3.1.0

Methods Documentation

close(self)

find_header(self, *args, **kwargs)
Find the nearest header from the current position.

If successful, the file pointer is left at the start of the header.

Parameters are as for locate_frames.

Returns

header
Retrieved header.

Raises

~baseband.vlbi_base.base.HeaderNotFoundError
If no header could be located.

AssertionError
If the header did not pass verification.

get_frame_rate(self)
Determine the number of frames per second.

The method cycles through headers, starting from the start of the file, finding the largest frame number
before it jumps back to 0 for a new second.

Returns

frame_rate
[Quantity] Frames per second.

Raises

EOFError
If the file contains less than one second of data.

locate_frames(self, pattern, *, mask=None, frame_nbytes=None, offset=0, forward=True, maxi-
mum=None, check=1)

Use a pattern to locate frame starts near the current position.

Note that the current position is always included.

Parameters

pattern
[header, ~numpy.ndaray, bytes, int, or iterable of int] Synchronization pattern to look for.
If a header or header class, invariant_pattern() is used to create a masked pattern,
using invariant keys from invariants(). If an ndarray or bytes instance, a byte array
view is taken. If an (iterable of) int, the integers need to be unsigned 32 bit and will be
interpreted as little-endian.

mask
[~numpy.ndarray, bytes, int, or iterable of int.] Bit mask for the pattern, with 1 indicating
a given bit will be used the comparison.

402 Chapter 12. VLBI Base

http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
https://docs.python.org/3/library/exceptions.html#EOFError
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#bytes


baseband Documentation, Release 3.1.0

frame_nbytes
[int, optional] Frame size in bytes. Defaults to the frame size in any header passed in.

offset
[int, optional] Offset from the frame start that the pattern occurs. Any offsets inferred from
masked entries are added to this (hence, no offset needed when a header is passed in as
pattern).

forward
[bool, optional] Seek forward if True (default), backward if False.

maximum
[int, optional] Maximum number of bytes to search away from the present location. De-
fault: search twice the frame size if given, otherwise 1 million (extra bytes to avoid partial
patterns will be added). Use 0 to check only at the current position.

check
[int or tuple of int, optional] Frame offsets where another sync pattern should be present
(if inside the file). Ignored if frame_nbytes is not given. Default: 1, i.e., a sync pattern
should be present one frame after the one found (independent of forward), thus helping
to guarantee the frame is not corrupted.

Returns

locations
[list of int] Locations of sync patterns within the range scanned, in order of proximity to
the starting position.

temporary_offset(self)
Context manager for temporarily seeking to another file position.

To be used as part of a with statement:

with fh_raw.temporary_offset() [as fh_raw]:
with-block

On exiting the with-block, the file pointer is moved back to its original position.

VLBIStreamBase

class baseband.vlbi_base.base.VLBIStreamBase(fh_raw, header0, sample_rate, samples_per_frame,
unsliced_shape, bps, complex_data, squeeze, sub-
set=(), fill_value=0.0, verify=True)

Bases: object

VLBI file wrapper, allowing access as a stream of data.

12.1. Reference/API 403

https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#object


baseband Documentation, Release 3.1.0

Attributes Summary

bps Bits per elementary sample.
complex_data Whether the data are complex.
header0 First header of the file.
sample_rate Number of complete samples per second.
sample_shape Shape of a complete sample (possibly subset or

squeezed).
samples_per_frame Number of complete samples per frame.
squeeze Whether data arrays have dimensions with length

unity removed.
start_time Start time of the file.
subset Specific components of the complete sample to de-

code.
time Time of the sample pointer’s current offset in file.
verify Whether to do consistency checks on frames being

read.

Methods Summary

close(self)
tell(self[, unit]) Current offset in the file.

Attributes Documentation

bps
Bits per elementary sample.

complex_data
Whether the data are complex.

header0
First header of the file.

sample_rate
Number of complete samples per second.

sample_shape
Shape of a complete sample (possibly subset or squeezed).

samples_per_frame
Number of complete samples per frame.

squeeze
Whether data arrays have dimensions with length unity removed.

If True, data read out has such dimensions removed, and data passed in for writing has them inserted.

start_time
Start time of the file.

See also time for the time of the sample pointer’s current offset.

subset
Specific components of the complete sample to decode.

404 Chapter 12. VLBI Base

https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

The order of dimensions is the same as for sample_shape. Set by the class initializer.

time
Time of the sample pointer’s current offset in file.

See also start_time for the start time of the file.

verify
Whether to do consistency checks on frames being read.

Methods Documentation

close(self)

tell(self, unit=None)
Current offset in the file.

Parameters

unit
[Unit or str, optional] Time unit the offset should be returned in. By default, no unit is
used, i.e., an integer enumerating samples is returned. For the special string ‘time’, the
absolute time is calculated.

Returns

offset
[int, Quantity, or Time] Offset in current file (or time at current position).

VLBIStreamReaderBase

class baseband.vlbi_base.base.VLBIStreamReaderBase(fh_raw, header0, sample_rate, sam-
ples_per_frame, unsliced_shape, bps, com-
plex_data, squeeze, subset, fill_value, verify)

Bases: baseband.vlbi_base.base.VLBIStreamBase

Attributes Summary

bps Bits per elementary sample.
complex_data Whether the data are complex.
dtype
fill_value Value to use for invalid or missing data.
header0 First header of the file.
info() Standardized information on stream readers.
ndim Number of dimensions of the (squeezed/subset)

stream data.
sample_rate Number of complete samples per second.
sample_shape Shape of a complete sample (possibly subset or

squeezed).
samples_per_frame Number of complete samples per frame.
shape Shape of the (squeezed/subset) stream data.

Continued on next page

12.1. Reference/API 405

http://docs.astropy.org/en/stable/api/astropy.units.Unit.html#astropy.units.Unit
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time


baseband Documentation, Release 3.1.0

Table 22 – continued from previous page
size Total number of component samples in the

(squeezed/subset) stream data.
squeeze Whether data arrays have dimensions with length

unity removed.
start_time Start time of the file.
stop_time Time at the end of the file, just after the last sample.
subset Specific components of the complete sample to de-

code.
time Time of the sample pointer’s current offset in file.
verify Whether to do consistency checks on frames being

read.

Methods Summary

close(self)
read(self[, count, out]) Read a number of complete (or subset) samples.
readable(self) Whether the file can be read and decoded.
seek(self, offset[, whence]) Change the stream position.
tell(self[, unit]) Current offset in the file.

Attributes Documentation

bps
Bits per elementary sample.

complex_data
Whether the data are complex.

dtype

fill_value
Value to use for invalid or missing data. Default: 0.

header0
First header of the file.

info
Standardized information on stream readers.

The info descriptor provides a few standard attributes, most of which can also be accessed directly on the
stream filehandle, and tests basic readability of the stream. More detailed information on the underlying
file is stored in its info, accessible via info.file_info (and shown by __repr__).

Attributes

start_time
[Time] Time of the first complete sample.

stop_time
[Time] Time of the complete sample just beyond the end of the file.

sample_rate
[Quantity] Complete samples per unit of time.

406 Chapter 12. VLBI Base

http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity


baseband Documentation, Release 3.1.0

shape
[tuple] Equivalent shape of the whole file, i.e., combining the number of complete samples
and the shape of those samples.

bps
[int] Number of bits used to encode each elementary sample.

complex_data
[bool] Whether the data are complex.

verify
[bool or str] The type of verification done by the stream reader.

readable
[bool] Whether the first and last samples could be read and decoded.

checks
[dict] Checks that were done to determine whether the file was readable (normally ‘con-
tinuous’ and ‘decodable’).

errors
[dict] Any exceptions raised while trying to determine attributes or doing checks. Keyed
by the attributes/checks.

warnings
[dict] Any warnings about the attributes or about the checks. Keyed by the at-
tributes/checks.

ndim
Number of dimensions of the (squeezed/subset) stream data.

sample_rate
Number of complete samples per second.

sample_shape
Shape of a complete sample (possibly subset or squeezed).

samples_per_frame
Number of complete samples per frame.

shape
Shape of the (squeezed/subset) stream data.

size
Total number of component samples in the (squeezed/subset) stream data.

squeeze
Whether data arrays have dimensions with length unity removed.

If True, data read out has such dimensions removed, and data passed in for writing has them inserted.

start_time
Start time of the file.

See also time for the time of the sample pointer’s current offset, and (if available) stop_time for the time
at the end of the file.

stop_time
Time at the end of the file, just after the last sample.

See also start_time for the start time of the file, and time for the time of the sample pointer’s current
offset.

12.1. Reference/API 407

https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

subset
Specific components of the complete sample to decode.

The order of dimensions is the same as for sample_shape. Set by the class initializer.

time
Time of the sample pointer’s current offset in file.

See also start_time for the start time, and (if available) stop_time for the end time, of the file.

verify
Whether to do consistency checks on frames being read.

Methods Documentation

close(self)

read(self, count=None, out=None)
Read a number of complete (or subset) samples.

The range retrieved can span multiple frames.

Parameters

count
[int or None, optional] Number of complete/subset samples to read. If None (default) or
negative, the whole file is read. Ignored if out is given.

out
[None or array, optional] Array to store the data in. If given, count will be inferred from
the first dimension; the other dimension should equal sample_shape.

Returns

out
[ndarray of float or complex] The first dimension is sample-time, and the remainder given
by sample_shape.

readable(self)
Whether the file can be read and decoded.

seek(self, offset, whence=0)
Change the stream position.

This works like a normal filehandle seek, but the offset is in samples (or a relative or absolute time).

Parameters

offset
[int, Quantity, or Time] Offset to move to. Can be an (integer) number of samples, an
offset in time units, or an absolute time.

whence
[{0, 1, 2, ‘start’, ‘current’, or ‘end’}, optional] Like regular seek, the offset is taken to be
from the start if whence=0 (default), from the current position if 1, and from the end if 2.
One can alternativey use ‘start’, ‘current’, or ‘end’ for 0, 1, or 2, respectively. Ignored if
offset is a time.

408 Chapter 12. VLBI Base

https://docs.python.org/3/library/constants.html#None
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time


baseband Documentation, Release 3.1.0

tell(self, unit=None)
Current offset in the file.

Parameters

unit
[Unit or str, optional] Time unit the offset should be returned in. By default, no unit is
used, i.e., an integer enumerating samples is returned. For the special string ‘time’, the
absolute time is calculated.

Returns

offset
[int, Quantity, or Time] Offset in current file (or time at current position).

VLBIStreamWriterBase

class baseband.vlbi_base.base.VLBIStreamWriterBase(fh_raw, header0, sample_rate, sam-
ples_per_frame, unsliced_shape, bps, com-
plex_data, squeeze, subset, fill_value, verify)

Bases: baseband.vlbi_base.base.VLBIStreamBase

Attributes Summary

bps Bits per elementary sample.
complex_data Whether the data are complex.
header0 First header of the file.
sample_rate Number of complete samples per second.
sample_shape Shape of a complete sample (possibly subset or

squeezed).
samples_per_frame Number of complete samples per frame.
squeeze Whether data arrays have dimensions with length

unity removed.
start_time Start time of the file.
subset Specific components of the complete sample to de-

code.
time Time of the sample pointer’s current offset in file.
verify Whether to do consistency checks on frames being

read.

Methods Summary

close(self)
tell(self[, unit]) Current offset in the file.
write(self, data[, valid]) Write data, buffering by frames as needed.

12.1. Reference/API 409

http://docs.astropy.org/en/stable/api/astropy.units.Unit.html#astropy.units.Unit
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time


baseband Documentation, Release 3.1.0

Attributes Documentation

bps
Bits per elementary sample.

complex_data
Whether the data are complex.

header0
First header of the file.

sample_rate
Number of complete samples per second.

sample_shape
Shape of a complete sample (possibly subset or squeezed).

samples_per_frame
Number of complete samples per frame.

squeeze
Whether data arrays have dimensions with length unity removed.

If True, data read out has such dimensions removed, and data passed in for writing has them inserted.

start_time
Start time of the file.

See also time for the time of the sample pointer’s current offset.

subset
Specific components of the complete sample to decode.

The order of dimensions is the same as for sample_shape. Set by the class initializer.

time
Time of the sample pointer’s current offset in file.

See also start_time for the start time of the file.

verify
Whether to do consistency checks on frames being read.

Methods Documentation

close(self)

tell(self, unit=None)
Current offset in the file.

Parameters

unit
[Unit or str, optional] Time unit the offset should be returned in. By default, no unit is
used, i.e., an integer enumerating samples is returned. For the special string ‘time’, the
absolute time is calculated.

Returns

410 Chapter 12. VLBI Base

https://docs.python.org/3/library/constants.html#True
http://docs.astropy.org/en/stable/api/astropy.units.Unit.html#astropy.units.Unit


baseband Documentation, Release 3.1.0

offset
[int, Quantity, or Time] Offset in current file (or time at current position).

write(self, data, valid=True)
Write data, buffering by frames as needed.

Parameters

data
[ndarray] Piece of data to be written, with sample dimensions as given by sample_shape.
This should be properly scaled to make best use of the dynamic range delivered by the
encoding.

valid
[bool, optional] Whether the current data are valid. Default: True.

Class Inheritance Diagram

HeaderNotFoundError

VLBIFileBase VLBIFileReaderBase

VLBIStreamBase

VLBIStreamReaderBase

VLBIStreamWriterBase

12.1.6 baseband.vlbi_base.file_info Module

Provide a base class for “info” properties.

Loosely based on DataInfo.

Classes

info_item(attr[, needs, default, doc, . . . ]) Like a lazy property, evaluated only once.
VLBIInfoMeta(name, bases, dct)
VLBIInfoBase([parent]) Container providing a standardized interface to file in-

formation.
VLBIFileReaderInfo([parent]) Standardized information on file readers.
VLBIStreamReaderInfo([parent]) Standardized information on stream readers.

12.1. Reference/API 411

http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/constants.html#True
http://docs.astropy.org/en/stable/api/astropy.utils.data_info.DataInfo.html#astropy.utils.data_info.DataInfo


baseband Documentation, Release 3.1.0

info_item

class baseband.vlbi_base.file_info.info_item(attr, needs=(), default=None, doc=None, miss-
ing=None, copy=False)

Bases: object

Like a lazy property, evaluated only once.

Can be used as a decorator.

It replaces itself with the evaluation of the function, i.e., it is not a data descriptor.

Any errors encountered during the evaluation are stored in the instances errors dict.

Parameters

attr
[str or callable, optional] If a string, assumes we will get that attribute from needs, otherwise
the attr will be called to calculate the value. In this case, the name of the attribute will be
taken from the callable’s name. If this argument is not given, it is assumed the class is used
as a decorator, and a wrapper is returned.

needs
[str or tuple of str] The attributes that need to be present to get or calculate attr. If attr is a
string, this should be where the attribute should be gotten from (e.g., ‘header0’ or ‘_parent’);
if not given, the attribute will simply be set to default.

default
[value, optional] The value to return if the needs are not met. Default: None.

doc
[str, optional] Docstring of the descriptor. If not given will be taken from attr if a function,
otherwise constructed. (Hard to access from within python, but useful for sphinx documen-
tation.)

missing
[str, optional] If the value could be calculated or retrieved, but is None, then add this string
to the missing attribute of the instance. Used, e.g., for Mark 5B to give a helpful message
if bps is not found on the file reader instance.

copy
[bool] Whether the copy the value if it is retrieved. This can be useful, e.g., if the value is
expected to be a dict and an independent copy should be made.

VLBIInfoMeta

class baseband.vlbi_base.file_info.VLBIInfoMeta(name, bases, dct)
Bases: type

412 Chapter 12. VLBI Base

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#type


baseband Documentation, Release 3.1.0

Methods Summary

__call__(self, /, \*args, \*\*kwargs) Call self as a function.
mro(self, /) Return a type’s method resolution order.

Methods Documentation

__call__(self, /, *args, **kwargs)
Call self as a function.

mro(self, /)
Return a type’s method resolution order.

VLBIInfoBase

class baseband.vlbi_base.file_info.VLBIInfoBase(parent=None)
Bases: object

Container providing a standardized interface to file information.

In order to ensure that information is always returned, all access to the parent should be via info_item, which
ensures that any errors are stored in self.errors. In addition, it may be useful to capture warnings and store
them in self.warnings.

The instance evaluates as True if the underlying file is of the right format, and can thus, at least in principle, be
read (though more information may be needed, given in missing, or the file may be corrupt futher on).

Parameters

parent
[instance, optional] Instance of the file or stream reader the info instance is attached too.
None if it is the class version.

Attributes Summary

attr_names Attributes that the container provides.

Methods Summary

__call__(self) Create a dict with file information.

12.1. Reference/API 413

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None


baseband Documentation, Release 3.1.0

Attributes Documentation

attr_names = ()
Attributes that the container provides.

Methods Documentation

__call__(self)
Create a dict with file information.

This includes information about checks done, possible missing information, as well as possible warnings
and errors.

VLBIFileReaderInfo

class baseband.vlbi_base.file_info.VLBIFileReaderInfo(parent=None)
Bases: baseband.vlbi_base.file_info.VLBIInfoBase

Standardized information on file readers.

The info descriptor has a number of standard attributes, which are determined from arguments passed in open-
ing the file, from the first header (info.header0) and from possibly scanning the file to determine the duration
of frames.

Examples

The most common use is simply to print information:

>>> from baseband.data import SAMPLE_MARK5B
>>> from baseband import mark5b
>>> fh = mark5b.open(SAMPLE_MARK5B, 'rb')
>>> fh.info
File information:
format = mark5b
number_of_frames = 4
frame_rate = 6400.0 Hz
bps = 2
complex_data = False
readable = False

missing: nchan: needed to determine sample shape, frame rate, ...
kday, ref_time: needed to infer full times.

>>> fh.close()

>>> fh = mark5b.open(SAMPLE_MARK5B, 'rb', kday=56000, nchan=8)
>>> fh.info
File information:
format = mark5b
number_of_frames = 4
frame_rate = 6400.0 Hz
sample_rate = 32.0 MHz
samples_per_frame = 5000
sample_shape = (8,)
bps = 2

(continues on next page)

414 Chapter 12. VLBI Base



baseband Documentation, Release 3.1.0

(continued from previous page)

complex_data = False
start_time = 2014-06-13T05:30:01.000000000
readable = True

checks: decodable: True
>>> fh.close()

Attributes

format
[str or None] File format, or None if the underlying file cannot be parsed.

number_of_frames
[int] Number of frames in the file.

frame_rate
[Quantity] Number of data frames per unit of time.

sample_rate
[Quantity] Complete samples per unit of time.

samples_per_frame
[int] Number of complete samples in each frame.

sample_shape
[tuple] Dimensions of each complete sample (e.g., (nchan,)).

bps
[int] Number of bits used to encode each elementary sample.

complex_data
[bool] Whether the data are complex.

start_time
[Time] Time of the first complete sample.

readable
[bool] Whether the first sample could be read and decoded.

missing
[dict] Entries are keyed by names of arguments that should be passed to the file reader to
obtain full information. The associated entries explain why these arguments are needed.

checks
[dict] Checks that were done to determine whether the file was readable (normally the only
entry is ‘decodable’).

errors
[dict] Any exceptions raised while trying to determine attributes or doing checks. Keyed by
the attributes/checks.

warnings
[dict] Any warnings about the attributes or about the checks. Keyed by the attributes/checks.

12.1. Reference/API 415

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time


baseband Documentation, Release 3.1.0

Attributes Summary

attr_names Attributes that the container provides.
bps Link to header0.bps
checks Link to checks
complex_data Link to header0.complex_data
decodable Whether decoding the first frame worked.
errors Link to errors
format The file format.
frame0 First frame from the file.
frame_rate Number of frames per unit time.
header0 Header of the first frame in the file.
missing Link to missing
number_of_frames Total number of frames.
readable Whether the file is readable and decodable.
sample_rate Rate of complete samples per unit time.
sample_shape Link to header0.sample_shape
samples_per_frame Link to header0.samples_per_frame
start_time Time of the first sample.
warnings Link to warnings

Methods Summary

__call__(self) Create a dict with file information.

Attributes Documentation

attr_names = ('format', 'number_of_frames', 'frame_rate', 'sample_rate', 'samples_per_frame', 'sample_shape', 'bps', 'complex_data', 'start_time', 'readable', 'missing', 'checks', 'errors', 'warnings')
Attributes that the container provides.

bps
Link to header0.bps

checks
Link to checks

complex_data
Link to header0.complex_data

decodable
Whether decoding the first frame worked.

errors
Link to errors

format
The file format.

frame0
First frame from the file.

frame_rate
Number of frames per unit time.

416 Chapter 12. VLBI Base



baseband Documentation, Release 3.1.0

header0
Header of the first frame in the file.

missing
Link to missing

number_of_frames
Total number of frames.

readable
Whether the file is readable and decodable.

sample_rate
Rate of complete samples per unit time.

sample_shape
Link to header0.sample_shape

samples_per_frame
Link to header0.samples_per_frame

start_time
Time of the first sample.

warnings
Link to warnings

Methods Documentation

__call__(self)
Create a dict with file information.

This includes information about checks done, possible missing information, as well as possible warnings
and errors.

VLBIStreamReaderInfo

class baseband.vlbi_base.file_info.VLBIStreamReaderInfo(parent=None)
Bases: baseband.vlbi_base.file_info.VLBIInfoBase

Standardized information on stream readers.

The info descriptor provides a few standard attributes, most of which can also be accessed directly on the
stream filehandle, and tests basic readability of the stream. More detailed information on the underlying file is
stored in its info, accessible via info.file_info (and shown by __repr__).

Attributes

start_time
[Time] Time of the first complete sample.

stop_time
[Time] Time of the complete sample just beyond the end of the file.

sample_rate
[Quantity] Complete samples per unit of time.

12.1. Reference/API 417

http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time
http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity


baseband Documentation, Release 3.1.0

shape
[tuple] Equivalent shape of the whole file, i.e., combining the number of complete samples
and the shape of those samples.

bps
[int] Number of bits used to encode each elementary sample.

complex_data
[bool] Whether the data are complex.

verify
[bool or str] The type of verification done by the stream reader.

readable
[bool] Whether the first and last samples could be read and decoded.

checks
[dict] Checks that were done to determine whether the file was readable (normally ‘contin-
uous’ and ‘decodable’).

errors
[dict] Any exceptions raised while trying to determine attributes or doing checks. Keyed by
the attributes/checks.

warnings
[dict] Any warnings about the attributes or about the checks. Keyed by the attributes/checks.

Attributes Summary

attr_names Attributes that the container provides.
bps Link to parent.bps
checks Link to file_info.checks
complex_data Link to parent.complex_data
continuous Check the stream is continuous.
errors Link to file_info.errors
file_info Information from the underlying file reader.
format Format of the underlying file.
readable Whether the stream can be read (possibly fixing er-

rors).
sample_rate Link to parent.sample_rate
shape Link to parent.shape
start_time Link to parent.start_time
stop_time Link to parent.stop_time
verify Link to parent.verify
warnings Link to file_info.warnings

418 Chapter 12. VLBI Base



baseband Documentation, Release 3.1.0

Methods Summary

__call__(self) Create a dict with information about the stream and
the raw file.

Attributes Documentation

attr_names = ('start_time', 'stop_time', 'sample_rate', 'shape', 'format', 'bps', 'complex_data', 'verify', 'readable', 'checks', 'errors', 'warnings')
Attributes that the container provides.

bps
Link to parent.bps

checks
Link to file_info.checks

complex_data
Link to parent.complex_data

continuous
Check the stream is continuous.

Tries reading the very end. If there is a problem, will bisect to find the exact offset at which the problem
occurs.

Errors are raised only to the extent verification is done. Hence, if the stream was opened with
verify=False, many fewer problems will be found, while if it was opened with verify='fix', then
for file types that support it, one will get warnings rather than exceptions (if the errors are fixable, of
course).

errors
Link to file_info.errors

file_info
Information from the underlying file reader.

format
Format of the underlying file.

readable
Whether the stream can be read (possibly fixing errors).

sample_rate
Link to parent.sample_rate

shape
Link to parent.shape

start_time
Link to parent.start_time

stop_time
Link to parent.stop_time

verify
Link to parent.verify

warnings
Link to file_info.warnings

12.1. Reference/API 419



baseband Documentation, Release 3.1.0

Methods Documentation

__call__(self)
Create a dict with information about the stream and the raw file.

Class Inheritance Diagram

VLBIFileReaderInfo

VLBIInfoBase

VLBIStreamReaderInfo

VLBIInfoMeta

info_item

12.1.7 baseband.vlbi_base.encoding Module

Encoders and decoders for generic VLBI data formats.

Functions

encode_1bit_base(values) Generic encoder for data stored using one bit.
encode_2bit_base(values) Generic encoder for data stored using two bits.
encode_4bit_base(values) Generic encoder for data stored using four bits.
decode_8bit(words) Generic decoder for data stored using 8 bits.
encode_8bit(values) Encode 8 bit VDIF data.

encode_1bit_base

baseband.vlbi_base.encoding.encode_1bit_base(values)
Generic encoder for data stored using one bit.

This returns an unsigned integer array containing encoded sample values that are either 0 (negative value) or 1
(positive value).

This does not pack the samples into bytes.

420 Chapter 12. VLBI Base



baseband Documentation, Release 3.1.0

encode_2bit_base

baseband.vlbi_base.encoding.encode_2bit_base(values)
Generic encoder for data stored using two bits.

This returns an unsigned integer array containing encoded sample values that range from 0 to 3. The conversion
from floating point sample value to unsigned int is given below, with lv = TWO_BIT_1_SIGMA = 2.1745:

Input range Output
value < -lv 0
-lv < value < 0. 2

0. < value < lv
1

lv < value 3

This does not pack the samples into bytes.

encode_4bit_base

baseband.vlbi_base.encoding.encode_4bit_base(values)
Generic encoder for data stored using four bits.

This returns an unsigned integer array containing encoded sample values that range from 0 to 15. Floating point
sample values are converted to unsigned int by first scaling them by FOUR_BIT_1_SIGMA = 2.95, then adding
8.5 (the 0.5 to ensure proper rounding when typecasting to uint8). Some sample output levels are:

Input range Output
value*scale < -7.5 0
-7.5 < value*scale < -6.5 1
-0.5 < value*scale < +0.5 8
6.5 < value*scale 15

This does not pack the samples into bytes.

decode_8bit

baseband.vlbi_base.encoding.decode_8bit(words)
Generic decoder for data stored using 8 bits.

We follow mark5access, which assumes the values 0 to 255 encode -127.5 to 127.5, scaled down to match 2 bit
data by a factor of 35.5 (EIGHT_BIT_1_SIGMA)

For comparison, GMRT phased data treats the 8-bit data values simply as signed integers.

12.1. Reference/API 421



baseband Documentation, Release 3.1.0

encode_8bit

baseband.vlbi_base.encoding.encode_8bit(values)
Encode 8 bit VDIF data.

We follow mark5access, which assumes the values 0 to 255 encode -127.5 to 127.5, scaled down to match 2 bit
data by a factor of 35.5 (EIGHT_BIT_1_SIGMA)

For comparison, GMRT phased data treats the 8-bit data values simply as signed integers.

Variables

OPTIMAL_2BIT_HIGH Optimal high value for a 2-bit digitizer for which the
low value is 1.

TWO_BIT_1_SIGMA Optimal level between low and high for the above OP-
TIMAL_2BIT_HIGH.

FOUR_BIT_1_SIGMA Scaling for four-bit encoding that makes it look like 2
bit.

EIGHT_BIT_1_SIGMA Scaling for eight-bit encoding that makes it look like 2
bit.

decoder_levels Levels for data encoded with different numbers of bits..

OPTIMAL_2BIT_HIGH

baseband.vlbi_base.encoding.OPTIMAL_2BIT_HIGH = 3.316505
Optimal high value for a 2-bit digitizer for which the low value is 1.

It is chosen such that for a normal distribution in which 68.269% of all values are at the low level, this is the
mean of the others, i.e.,

𝑙 =

∫︀∞
𝜎

𝑥 exp(− 𝑥2

2𝜎2 )𝑑𝑥∫︀∞
𝜎

exp(− 𝑥2

2𝜎2 )𝑑𝑥
,

where the standard deviation is determined from:

1 =

∫︀ 𝜎

0
𝑥 exp(− 𝑥2

2𝜎2 )𝑑𝑥∫︀ 𝜎

0
exp(− 𝑥2

2𝜎2 )𝑑𝑥
.

These give:

𝜎 =

√︀
𝜋
2 erf(

√︀
1/2)

1−
√︀
1/𝑒

= 2.174564,

and

𝑙 =
1

(
√
𝑒− 1)(1/erf(

√︀
1/2)− 1)

= 3.316505

422 Chapter 12. VLBI Base



baseband Documentation, Release 3.1.0

TWO_BIT_1_SIGMA

baseband.vlbi_base.encoding.TWO_BIT_1_SIGMA = 2.174564
Optimal level between low and high for the above OPTIMAL_2BIT_HIGH.

FOUR_BIT_1_SIGMA

baseband.vlbi_base.encoding.FOUR_BIT_1_SIGMA = 2.95
Scaling for four-bit encoding that makes it look like 2 bit.

EIGHT_BIT_1_SIGMA

baseband.vlbi_base.encoding.EIGHT_BIT_1_SIGMA = 35.5
Scaling for eight-bit encoding that makes it look like 2 bit.

decoder_levels

baseband.vlbi_base.encoding.decoder_levels = {1: array([-1., 1.], dtype=float32), 2: array([-3.316505, -1. , 1. , 3.316505], dtype=float32), 4: array([-2.7118645 , -2.3728814 , -2.0338984 , -1.6949152 , -1.3559322 , -1.0169492 , -0.6779661 , -0.33898306, 0. , 0.33898306, 0.6779661 , 1.0169492 , 1.3559322 , 1.6949152 , 2.0338984 , 2.3728814 ], dtype=float32)}
Levels for data encoded with different numbers of bits..

12.1.8 baseband.vlbi_base.utils Module

Functions

lcm(a, b) Calculate the least common multiple of a and b.
bcd_decode(value)
bcd_encode(value)
byte_array(pattern) Convert the pattern to a byte array.

lcm

baseband.vlbi_base.utils.lcm(a, b)
Calculate the least common multiple of a and b.

12.1. Reference/API 423



baseband Documentation, Release 3.1.0

bcd_decode

baseband.vlbi_base.utils.bcd_decode(value)

bcd_encode

baseband.vlbi_base.utils.bcd_encode(value)

byte_array

baseband.vlbi_base.utils.byte_array(pattern)
Convert the pattern to a byte array.

Parameters

pattern
[~numpy.ndarray, bytes, int, or iterable of int] Pattern to convert. If a ndarray or bytes
instance, a byte array view is taken. If an (iterable of) int, the integers need to be unsigned
32 bit and will be interpreted as little-endian.

Returns

byte_array
[ndarray of byte] With any elements of pattern stored in little-endian order.

Classes

CRC(polynomial) Cyclic Redundancy Check.
CRCStack(polynomial) Cyclic Redundancy Check for a bitstream.

CRC

class baseband.vlbi_base.utils.CRC(polynomial)
Bases: object

Cyclic Redundancy Check.

See https://en.wikipedia.org/wiki/Cyclic_redundancy_check

Once initialised, the instance can be used as a function that calculates the CRC, or one can use the check method
to verify that the CRC in the lower bits of a value is correct.

Parameters

polynomial
[int] Binary encoded CRC divisor. For instance, that used by Mark 5B headers is 0x18005,
or x^16 + x^15 + x^2 + 1.

See also:

424 Chapter 12. VLBI Base

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#object
https://en.wikipedia.org/wiki/Cyclic_redundancy_check


baseband Documentation, Release 3.1.0

baseband.vlbi_base.utils.CRCStack
for calculating CRC on arrays where each entry represents a bit.

Methods Summary

__call__(self, stream) Calculate CRC for the given stream.
check(self, stream) Check that the CRC at the end of athe stream is cor-

rect.

Methods Documentation

__call__(self, stream)
Calculate CRC for the given stream.

Parameters

stream
[int or array of unsigned int] The integer (or array of integers) to calculate the CRC for.

Returns

crc
[int or array] If an array, the crc will have the same dtype as the input stream.

check(self, stream)
Check that the CRC at the end of athe stream is correct.

Parameters

stream
[int or array of unsigned int] For an integer, the value is the stream to check the CRC for.
For arrays, the dimension is treated as the index into the bits. A single stream would thus
be of type bool. Unsigned integers represent multiple streams. E.g., for a 64-track Mark
4 header, the stream would be an array of np.uint64 words.

Returns

ok
[bool] True if the calculated CRC is all zero (which should be the case if the CRC at the
end of the stream is correct).

CRCStack

class baseband.vlbi_base.utils.CRCStack(polynomial)
Bases: baseband.vlbi_base.utils.CRC

Cyclic Redundancy Check for a bitstream.

See https://en.wikipedia.org/wiki/Cyclic_redundancy_check

Once initialised, the instance can be used as a function that calculates the CRC, or one can use the check method
to verify that the CRC at the end of a stream is correct.

12.1. Reference/API 425

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://en.wikipedia.org/wiki/Cyclic_redundancy_check


baseband Documentation, Release 3.1.0

This class is specifically for arrays in which multiple bit streams occupy different bit levels, and the dimension
is treated as the index into the bits. A single stream would thus be of type bool. Unsigned integers represent
multiple streams. E.g., for a 64-track Mark 4 header, the stream would be an array of np.uint64 words.

Parameters

polynomial
[int] Binary encoded CRC divisor. For instance, that used by Mark 4 headers is 0x180f, or
x^12 + x^11 + x^3 + x^2 + x + 1.

See also:

baseband.vlbi_base.utils.CRC
for calculating CRC for a single value or an array of values.

Methods Summary

__call__(self, stream) Calculate CRC for the given stream.
check(self, stream) Check that the CRC at the end of athe stream is cor-

rect.

Methods Documentation

__call__(self, stream)
Calculate CRC for the given stream.

Parameters

stream
[int or array of unsigned int] The integer (or array of integers) to calculate the CRC for.

Returns

crc
[int or array] If an array, the crc will have the same dtype as the input stream.

check(self, stream)
Check that the CRC at the end of athe stream is correct.

Parameters

stream
[int or array of unsigned int] For an integer, the value is the stream to check the CRC for.
For arrays, the dimension is treated as the index into the bits. A single stream would thus
be of type bool. Unsigned integers represent multiple streams. E.g., for a 64-track Mark
4 header, the stream would be an array of np.uint64 words.

Returns

ok
[bool] True if the calculated CRC is all zero (which should be the case if the CRC at the
end of the stream is correct).

426 Chapter 12. VLBI Base

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

Class Inheritance Diagram

CRC CRCStack

12.1. Reference/API 427



baseband Documentation, Release 3.1.0

428 Chapter 12. VLBI Base



CHAPTER

THIRTEEN

SAMPLE DATA FILES

13.1 baseband.data Package

Sample files with baseband data recorded in different formats.

13.1.1 Variables

SAMPLE_AROCHIME_VDIF VDIF sample from ARO, written by CHIME backend.
SAMPLE_BPS1_VDIF VDIF sample from Christian Ploetz.
SAMPLE_DADA DADA sample from Effelsberg, with header adapted to

shortened size.
SAMPLE_DRAO_CORRUPT Corrupted VDIF sample.
SAMPLE_GSB_PHASED GSB phased sample.
SAMPLE_GSB_PHASED_HEADER GSB phased header sample.
SAMPLE_GSB_RAWDUMP GSB rawdump sample.
SAMPLE_GSB_RAWDUMP_HEADER GSB rawdump header sample.
SAMPLE_MARK4 Mark 4 sample.
SAMPLE_MARK4_16TRACK Mark 4 sample.
SAMPLE_MARK4_32TRACK Mark 4 sample.
SAMPLE_MARK4_32TRACK_FANOUT2 Mark 4 sample.
SAMPLE_MARK5B Mark 5B sample.
SAMPLE_MWA_VDIF VDIF sample from MWA.
SAMPLE_PUPPI GUPPI/PUPPI sample, npol=2, nchan=4.
SAMPLE_VDIF VDIF sample.
SAMPLE_VLBI_VDIF VDIF sample.

SAMPLE_AROCHIME_VDIF

baseband.data.SAMPLE_AROCHIME_VDIF = '/home/docs/checkouts/readthedocs.org/user_builds/baseband/conda/v3.1.0/lib/python3.8/site-packages/baseband-3.1.0-py3.8.egg/baseband/data/sample_arochime.vdif'
VDIF sample from ARO, written by CHIME backend. EDV=1, nchan=1024, bps=4.

429



baseband Documentation, Release 3.1.0

SAMPLE_BPS1_VDIF

baseband.data.SAMPLE_BPS1_VDIF = '/home/docs/checkouts/readthedocs.org/user_builds/baseband/conda/v3.1.0/lib/python3.8/site-packages/baseband-3.1.0-py3.8.egg/baseband/data/sample_bps1.vdif'
VDIF sample from Christian Ploetz. EDV=0, nchan=16, bps=1.

SAMPLE_DADA

baseband.data.SAMPLE_DADA = '/home/docs/checkouts/readthedocs.org/user_builds/baseband/conda/v3.1.0/lib/python3.8/site-packages/baseband-3.1.0-py3.8.egg/baseband/data/sample.dada'
DADA sample from Effelsberg, with header adapted to shortened size.

SAMPLE_DRAO_CORRUPT

baseband.data.SAMPLE_DRAO_CORRUPT = '/home/docs/checkouts/readthedocs.org/user_builds/baseband/conda/v3.1.0/lib/python3.8/site-packages/baseband-3.1.0-py3.8.egg/baseband/data/sample_drao_corrupted.vdif'
Corrupted VDIF sample. bps=4.

First ten frames extracted from b0329 DRAO corrupted raw data file 0059000.dat.

SAMPLE_GSB_PHASED

baseband.data.SAMPLE_GSB_PHASED = (('/home/docs/checkouts/readthedocs.org/user_builds/baseband/conda/v3.1.0/lib/python3.8/site-packages/baseband-3.1.0-py3.8.egg/baseband/data/gsb/sample_gsb_phased.Pol-L1.dat', '/home/docs/checkouts/readthedocs.org/user_builds/baseband/conda/v3.1.0/lib/python3.8/site-packages/baseband-3.1.0-py3.8.egg/baseband/data/gsb/sample_gsb_phased.Pol-L2.dat'), ('/home/docs/checkouts/readthedocs.org/user_builds/baseband/conda/v3.1.0/lib/python3.8/site-packages/baseband-3.1.0-py3.8.egg/baseband/data/gsb/sample_gsb_phased.Pol-R1.dat', '/home/docs/checkouts/readthedocs.org/user_builds/baseband/conda/v3.1.0/lib/python3.8/site-packages/baseband-3.1.0-py3.8.egg/baseband/data/gsb/sample_gsb_phased.Pol-R2.dat'))
GSB phased sample. samples_per_frame=8

80 complete samples, starting from seq_nr=9994, from 2013-07-27 GMRT observations of PSR J1810+1744,
rewritten so each frame has 8 complete samples.

SAMPLE_GSB_PHASED_HEADER

baseband.data.SAMPLE_GSB_PHASED_HEADER = '/home/docs/checkouts/readthedocs.org/user_builds/baseband/conda/v3.1.0/lib/python3.8/site-packages/baseband-3.1.0-py3.8.egg/baseband/data/gsb/sample_gsb_phased.timestamp'
GSB phased header sample.

10 header entries, starting from seq_nr=9994, from 2013-07-27 GMRT observations of PSR J1810+1744.

SAMPLE_GSB_RAWDUMP

baseband.data.SAMPLE_GSB_RAWDUMP = '/home/docs/checkouts/readthedocs.org/user_builds/baseband/conda/v3.1.0/lib/python3.8/site-packages/baseband-3.1.0-py3.8.egg/baseband/data/gsb/sample_gsb_rawdump.dat'
GSB rawdump sample. samples_per_frame=8192

First 81920 samples of node 5 rawdump data from 2015-04-27 GMRT observations of the Crab pulsar.

SAMPLE_GSB_RAWDUMP_HEADER

baseband.data.SAMPLE_GSB_RAWDUMP_HEADER = '/home/docs/checkouts/readthedocs.org/user_builds/baseband/conda/v3.1.0/lib/python3.8/site-packages/baseband-3.1.0-py3.8.egg/baseband/data/gsb/sample_gsb_rawdump.timestamp'
GSB rawdump header sample.

First 10 header entries of node 5 rawdump data from 2015-04-27 GMRT observations of the Crab pulsar.

430 Chapter 13. Sample Data Files



baseband Documentation, Release 3.1.0

SAMPLE_MARK4

baseband.data.SAMPLE_MARK4 = '/home/docs/checkouts/readthedocs.org/user_builds/baseband/conda/v3.1.0/lib/python3.8/site-packages/baseband-3.1.0-py3.8.egg/baseband/data/sample.m4'
Mark 4 sample. ntrack=64, fanout=4, bps=2.

Created from a European VLBI Network/Arecibo PSR B1957+20 observation using dd if=gp052d_ar_no0021
of=sample.m4 bs=128000 count=3

SAMPLE_MARK4_16TRACK

baseband.data.SAMPLE_MARK4_16TRACK = '/home/docs/checkouts/readthedocs.org/user_builds/baseband/conda/v3.1.0/lib/python3.8/site-packages/baseband-3.1.0-py3.8.egg/baseband/data/sample_16track.m4'
Mark 4 sample. ntrack=16, fanout=4, bps=2.

Created from the first two frames an Arecibo observation of the Crab Pulsar on 2013/11/03.
(2013_306_raks02ae/ar/gs033a_ar_no0055.m5a)

SAMPLE_MARK4_32TRACK

baseband.data.SAMPLE_MARK4_32TRACK = '/home/docs/checkouts/readthedocs.org/user_builds/baseband/conda/v3.1.0/lib/python3.8/site-packages/baseband-3.1.0-py3.8.egg/baseband/data/sample_32track.m4'
Mark 4 sample. ntrack=32, fanout=4, bps=2.

Created from a Arecibo observation simultaneous with RadioAstron using dd if=rg10a_ar_no0014
of=sample_32track.m4 bs=10000 count=17

SAMPLE_MARK4_32TRACK_FANOUT2

baseband.data.SAMPLE_MARK4_32TRACK_FANOUT2 = '/home/docs/checkouts/readthedocs.org/user_builds/baseband/conda/v3.1.0/lib/python3.8/site-packages/baseband-3.1.0-py3.8.egg/baseband/data/sample_32track_fanout2.m4'
Mark 4 sample. ntrack=32, fanout=2, bps=2.

Created from an Arecibo observation of PSR B1133+16 using dd if=gk049c_ar_no0011.m5a
of=sample_32track_fanout2.m4 bs=10000 count=18

SAMPLE_MARK5B

baseband.data.SAMPLE_MARK5B = '/home/docs/checkouts/readthedocs.org/user_builds/baseband/conda/v3.1.0/lib/python3.8/site-packages/baseband-3.1.0-py3.8.egg/baseband/data/sample.m5b'
Mark 5B sample. nchan=8, bps=2.

Created from a EVN/WSRT PSR B1957+20 observation.

SAMPLE_MWA_VDIF

baseband.data.SAMPLE_MWA_VDIF = '/home/docs/checkouts/readthedocs.org/user_builds/baseband/conda/v3.1.0/lib/python3.8/site-packages/baseband-3.1.0-py3.8.egg/baseband/data/sample_mwa.vdif'
VDIF sample from MWA. EDV=0, two threads, bps=8

13.1. baseband.data Package 431



baseband Documentation, Release 3.1.0

SAMPLE_PUPPI

baseband.data.SAMPLE_PUPPI = '/home/docs/checkouts/readthedocs.org/user_builds/baseband/conda/v3.1.0/lib/python3.8/site-packages/baseband-3.1.0-py3.8.egg/baseband/data/sample_puppi.raw'
GUPPI/PUPPI sample, npol=2, nchan=4.

Created from the first four frames of a 2018-01-14 Arecibo observation of J1810+1744, with payload shortened
to 8192 complete samples (with 512 overlap).

SAMPLE_VDIF

baseband.data.SAMPLE_VDIF = '/home/docs/checkouts/readthedocs.org/user_builds/baseband/conda/v3.1.0/lib/python3.8/site-packages/baseband-3.1.0-py3.8.egg/baseband/data/sample.vdif'
VDIF sample. 8 threads, bps=2.

Created from a EVN/VLBA PSR B1957+20 observation. Timestamps of frames with even thread IDs have been
corrected to be consistent with odd-ID frames.

SAMPLE_VLBI_VDIF

baseband.data.SAMPLE_VLBI_VDIF = '/home/docs/checkouts/readthedocs.org/user_builds/baseband/conda/v3.1.0/lib/python3.8/site-packages/baseband-3.1.0-py3.8.egg/baseband/data/sample_vlbi.vdif'
VDIF sample. 8 threads, bps=2.

Created from a EVN/VLBA PSR B1957+20 observation. Uncorrected version of SAMPLE_VDIF.

432 Chapter 13. Sample Data Files



Part IV

Developer Documentation

433





baseband Documentation, Release 3.1.0

The developer documentation feature tutorials for supporting new formats or format extensions such as VDIF EDV. It
also contains instructions for publishing new code releases.

435



baseband Documentation, Release 3.1.0

436



CHAPTER

FOURTEEN

SUPPORTING A NEW VDIF EDV

Users may encounter VDIF files with unusual headers not currently supported by Baseband. These may either have
novel EDV, or they may purport to be a supported EDV but not conform to its formal specification. To handle such
situations, Baseband supports implementation of new EDVs and overriding of existing EDVs without the need to
modify Baseband’s source code.

The tutorials below assumes the following modules have been imported:

>>> import numpy as np
>>> import astropy.units as u
>>> from baseband import vdif, vlbi_base as vlbi

14.1 VDIF Headers

Each VDIF frame begins with a 32-byte, or eight 32-bit word, header that is structured as follows:

Fig. 1: Schematic of the standard 32-bit VDIF header, from VDIF specification release 1.1.1 document, Fig. 3. 32-
bit words are labelled on the left, while byte and bit numbers above indicate relative addresses within each word.
Subscripts indicate field length in bits.

where the abbreviated labels are

• I1 - invalid data

• L1 - if 1, header is VDIF legacy

437

https://www.vlbi.org/vdif/
https://vlbi.org/wp-content/uploads/2019/03/VDIF_specification_Release_1.1.1.pdf


baseband Documentation, Release 3.1.0

• V3 - VDIF version number

• log2(#chns)5 - log2 of the number of sub-bands in the frame

• C1 - if 1, complex data

• EDV8 - “extended data version” number; see below

Detailed definitions of terms are found on pages 5 to 7 of the VDIF specification document.

Words 4 - 7 hold optional extended user data, using a layout specified by the EDV, in word 4 of the header. EDV
formats can be registered on the VDIF website; Baseband aims to support all registered formats (but does not currently
support EDV = 4).

14.2 Implementing a New EDV

In this tutorial, we follow the implementation of an EDV=4 header. This would be a first and required step to support
that format, but does not suffice, as it also needs a new frame class that allows the purpose of the EDV class, which
is to independently store the validity of sub-band channels within a single data frame, rather than using the single
invalid-data bit. From the EDV=4 specification, we see that we need to add the following to the standard VDIF
header:

• Validity header mask (word 4, bits 16 - 24): integer value between 1 and 64 inclusive indicating the number of
validity bits. (This is different than log2(#chns)5, since some channels can be unused.)

• Synchronization pattern (word 5): constant byte sequence 0xACABFEED, for finding the locations of headers in a
data stream.

• Validity mask (words 6 - 7): 64-bit binary mask indicating the validity of sub-bands. Any fraction of 64 sub-
bands can be stored in this format, with any unused bands labelled as invalid (0) in the mask. If the number of
bands exceeds 64, each bit indicates the validity of a group of sub-bands; see specification for details.

See Sec. 3.1 of the specification for best practices on using the invalid data bit I1 in word 0.

In Baseband, a header is parsed using VDIFHeader, which returns a header instance of one of its subclasses, corre-
sponding to the header EDV. This can be seen in the baseband.vdif.header module class inheritance diagram. To
support a new EDV, we create a new subclass to baseband.vdif.VDIFHeader:

>>> class VDIFHeader4(vdif.header.VDIFHeader):
... _edv = 4
...
... _header_parser = vlbi.header.HeaderParser(
... (('invalid_data', (0, 31, 1, False)),
... ('legacy_mode', (0, 30, 1, False)),
... ('seconds', (0, 0, 30)),
... ('_1_30_2', (1, 30, 2, 0x0)),
... ('ref_epoch', (1, 24, 6)),
... ('frame_nr', (1, 0, 24, 0x0)),
... ('vdif_version', (2, 29, 3, 0x1)),
... ('lg2_nchan', (2, 24, 5)),
... ('frame_length', (2, 0, 24)),
... ('complex_data', (3, 31, 1)),
... ('bits_per_sample', (3, 26, 5)),
... ('thread_id', (3, 16, 10, 0x0)),
... ('station_id', (3, 0, 16)),
... ('edv', (4, 24, 8)),
... ('validity_mask_length', (4, 16, 8, 0)),
... ('sync_pattern', (5, 0, 32, 0xACABFEED)),
... ('validity_mask', (6, 0, 64, 0))))

438 Chapter 14. Supporting a New VDIF EDV

https://vlbi.org/wp-content/uploads/2019/03/VDIF_specification_Release_1.1.1.pdf
https://www.vlbi.org/vdif/
https://vlbi.org/wp-content/uploads/2019/03/edv4description.pdf


baseband Documentation, Release 3.1.0

VDIFHeader has a metaclass that ensures that whenever it is subclassed, the subclass definition is inserted into the
VDIF_HEADER_CLASSES dictionary using its EDV value as the dictionary key. Methods in VDIFHeader use this dic-
tionary to determine the type of object to return for a particular EDV. How all this works is further discussed in the
documentation of the VDIF baseband.vdif.header module.

The class must have a private _edv attribute for it to properly be registered in VDIF_HEADER_CLASSES. It must also
feature a _header_parser that reads these words to return header properties. For this, we use baseband.vlbi_base.
header.HeaderParser. To initialize a header parser, we pass it a tuple of header properties, where each entry follows
the syntax:

('property_name', (word_index, bit_index, bit_length, default))

where

• property_name: name of the header property; this will be the key;

• word_index: index into the header words for this key;

• bit_index: index to the starting bit of the part used;

• bit_length: number of bits used, normally between 1 and 32, but can be 64 for adding two words together;
and

• default: (optional) default value to use in initialization.

For further details, see the documentation of HeaderParser.

Once defined, we can use our new header like any other:

>>> myheader = vdif.header.VDIFHeader.fromvalues(
... edv=4, seconds=14363767, nchan=1, samples_per_frame=1024,
... station=65532, bps=2, complex_data=False,
... thread_id=3, validity_mask_length=60,
... validity_mask=(1 << 59) + 1)
>>> myheader
<VDIFHeader4 invalid_data: False,

legacy_mode: False,
seconds: 14363767,
_1_30_2: 0,
ref_epoch: 0,
frame_nr: 0,
vdif_version: 1,
lg2_nchan: 0,
frame_length: 36,
complex_data: False,
bits_per_sample: 1,
thread_id: 3,
station_id: 65532,
edv: 4,
validity_mask_length: 60,
sync_pattern: 0xacabfeed,
validity_mask: 576460752303423489>

>>> myheader['validity_mask'] == 2**59 + 1
True

There is an easier means of instantiating the header parser. As can be seen in the class inheritance diagram for the
header module, many VDIF headers are subclassed from other VDIFHeader subclasses, namely VDIFBaseHeader
and VDIFSampleRateHeader. This is because many EDV specifications share common header values, and so their
functions and derived properties should be shared as well. Moreover, header parsers can be appended to one another,
which saves repetitious coding because the first four words of any VDIF header are the same. Indeed, we can create
the same header as above by subclassing VDIFBaseHeader:

14.2. Implementing a New EDV 439



baseband Documentation, Release 3.1.0

>>> class VDIFHeader4Enhanced(vdif.header.VDIFBaseHeader):
... _edv = 42
...
... _header_parser = vdif.header.VDIFBaseHeader._header_parser +\
... vlbi.header.HeaderParser((
... ('validity_mask_length', (4, 16, 8, 0)),
... ('sync_pattern', (5, 0, 32, 0xACABFEED)),
... ('validity_mask', (6, 0, 64, 0))))
...
... _properties = vdif.header.VDIFBaseHeader._properties + ('validity',)
...
... def verify(self):
... """Basic checks of header integrity."""
... super(VDIFHeader4Enhanced, self).verify()
... assert 1 <= self['validity_mask_length'] <= 64
...
... @property
... def validity(self):
... """Validity mask array with proper length.
...
... If set, writes both ``validity_mask`` and ``validity_mask_length``.
... """
... bitmask = np.unpackbits(self['validity_mask'].astype('>u8')
... .view('u1'))[::-1].astype(bool)
... return bitmask[:self['validity_mask_length']]
...
... @validity.setter
... def validity(self, validity):
... bitmask = np.zeros(64, dtype=bool)
... bitmask[:len(validity)] = validity
... self['validity_mask_length'] = len(validity)
... self['validity_mask'] = np.packbits(bitmask[::-1]).view('>u8')

Here, we set edv = 42 because VDIFHeader’s metaclass is designed to prevent accidental overwriting of existing
entries in VDIF_HEADER_CLASSES. If we had used _edv = 4, we would have gotten an exception:

ValueError: EDV 4 already registered in VDIF_HEADER_CLASSES

We shall see how to override header classes in the next section. Except for the EDV, VDIFHeader4Enhanced’s header
structure is identical to VDIFHeader4. It also contains a few extra functions to enhance the header’s usability.

The verify function is an optional function that runs upon header initialization to check its veracity. Ours simply
checks that the validity mask length is in the allowed range, but we also call the same function in the superclass
(VDIFBaseHeader), which checks that the header is not in 4-word “legacy mode”, that the header’s EDV matches that
read from the words, that there are eight words, and that the sync pattern matches 0xACABFEED.

The validity_mask is a bit mask, which is not necessarily the easiest to use directly. Hence, implement a derived
validity property that generates a boolean mask of the right length (note that this is not right for cases whether
the number of channels in the header exceeds 64). We also define a corresponding setter, and add this to the private
_properties attribute, so that we can use validity as a keyword in fromvalues:

>>> myenhancedheader = vdif.header.VDIFHeader.fromvalues(
... edv=42, seconds=14363767, nchan=1, samples_per_frame=1024,
... station=65532, bps=2, complex_data=False,
... thread_id=3, validity=[True]+[False]*58+[True])
>>> myenhancedheader
<VDIFHeader4Enhanced invalid_data: False,

legacy_mode: False,

(continues on next page)

440 Chapter 14. Supporting a New VDIF EDV



baseband Documentation, Release 3.1.0

(continued from previous page)

seconds: 14363767,
_1_30_2: 0,
ref_epoch: 0,
frame_nr: 0,
vdif_version: 1,
lg2_nchan: 0,
frame_length: 36,
complex_data: False,
bits_per_sample: 1,
thread_id: 3,
station_id: 65532,
edv: 42,
validity_mask_length: 60,
sync_pattern: 0xacabfeed,
validity_mask: [576460752303423489]>

>>> assert myenhancedheader['validity_mask'] == 2**59 + 1
>>> assert (myenhancedheader.validity == [True]+[False]*58+[True]).all()
>>> myenhancedheader.validity = [True]*8
>>> myenhancedheader['validity_mask']
array([255], dtype=uint64)

Note: If you have implemented support for a new EDV that is widely used, we encourage you to make a pull request
to Baseband’s GitHub repository, as well as to register it (if it is not already registered) with the VDIF consortium!

14.3 Replacing an Existing EDV

Above, we mentioned that VDIFHeader’s metaclass is designed to prevent accidental overwriting of existing entries in
VDIF_HEADER_CLASSES, so attempting to assign two header classes to the same EDV results in an exception. There
are situations such the one above, however, where we’d like to replace one header with another.

To get VDIFHeader to use VDIFHeader4Enhanced when edv=4, we can manually insert it in the dictionary:

>>> vdif.header.VDIF_HEADER_CLASSES[4] = VDIFHeader4Enhanced

Of course, we should then be sure that its _edv attribute is correct:

>>> VDIFHeader4Enhanced._edv = 4

VDIFHeader will now return instances of VDIFHeader4Enhanced when reading headers with edv = 4:

>>> myheader = vdif.header.VDIFHeader.fromvalues(
... edv=4, seconds=14363767, nchan=1,
... station=65532, bps=2, complex_data=False,
... thread_id=3, validity=[True]*60)
>>> assert isinstance(myheader, VDIFHeader4Enhanced)

Note: Failing to modify _edv in the class definition will lead to an EDV mismatch when verify is called during
header initialization.

This can also be used to override VDIFHeader’s behavior even for EDVs that are supported by Baseband, which may
prove useful when reading data with corrupted or mislabelled headers. To illustrate this, we attempt to read in a

14.3. Replacing an Existing EDV 441

https://github.com/mhvk/baseband
https://www.vlbi.org/vdif/


baseband Documentation, Release 3.1.0

corrupted VDIF file originally from the Dominion Radio Astrophysical Observatory. This file can be imported from
the baseband data directory:

>>> from baseband.data import SAMPLE_DRAO_CORRUPT

Naively opening the file with

>>> fh = vdif.open(SAMPLE_DRAO_CORRUPT, 'rs')

will lead to an AssertionError. This is because while the headers of the file use EDV=0, it deviates from that EDV
standard by storing additional information an: an “eud2” parameter in word 5, which is related to the sample time.
Furthermore, the bits_per_sample setting is incorrect (it should be 3 rather than 4 – the number is defined such that
a one-bit sample has a bits_per_sample code of 0). Finally, though not an error, the thread_id in word 3 defines
two parts, link and slot, which reflect the data acquisition computer node that wrote the data to disk.

To accommodate these changes, we design an alternate header. We first pop the EDV = 0 entry from
VDIF_HEADER_CLASSES:

>>> vdif.header.VDIF_HEADER_CLASSES.pop(0)
<class 'baseband.vdif.header.VDIFHeader0'>

We then define a replacement class:

>>> class DRAOVDIFHeader(vdif.header.VDIFHeader0):
... """DRAO VDIF Header
...
... An extension of EDV=0 which uses the thread_id to store link
... and slot numbers, and adds a user keyword (illegal in EDV0,
... but whatever) that identifies data taken at the same time.
...
... The header also corrects 'bits_per_sample' to be properly bps-1.
... """
...
... _header_parser = vdif.header.VDIFHeader0._header_parser + \
... vlbi.header.HeaderParser((('link', (3, 16, 4)),
... ('slot', (3, 20, 6)),
... ('eud2', (5, 0, 32))))
...
... def verify(self):
... pass # this is a hack, don't bother with verification...
...
... @classmethod
... def fromfile(cls, fh, edv=0, verify=False):
... self = super(DRAOVDIFHeader, cls).fromfile(fh, edv=0,
... verify=False)
... # Correct wrong bps
... self.mutable = True
... self['bits_per_sample'] = 3
... return self

We override verify because VDIFHeader0’s verify function checks that word 5 contains no data. We also override
the fromfile class method such that the bits_per_sample property is reset to its proper value whenever a header is
read from file.

We can now read in the corrupt file by manually reading in the header, then the payload, of each frame:

>>> fh = vdif.open(SAMPLE_DRAO_CORRUPT, 'rb')
>>> header0 = DRAOVDIFHeader.fromfile(fh)

(continues on next page)

442 Chapter 14. Supporting a New VDIF EDV



baseband Documentation, Release 3.1.0

(continued from previous page)

>>> header0['eud2'] == 667235140
True
>>> header0['link'] == 2
True
>>> payload0 = vdif.payload.VDIFPayload.fromfile(fh, header0)
>>> payload0.shape == (header0.samples_per_frame, header0.nchan)
True
>>> fh.close()

Reading a frame using VDIFFrame will still fail, since its _header_class is VDIFHeader, and so VDIFHeader.
fromfile, rather than the function we defined, is used to read in headers. If we wanted to use VDIFFrame, we
would need to set

VDIFFrame._header_class = DRAOVDIFHeader

before using baseband.vdif.open(), so that header files are read using DRAOVDIFHeader.fromfile.

A more elegant solution that is compatible with baseband.vdif.base.VDIFStreamReader without hacking
baseband.vdif.frame.VDIFFrame involves modifying the bits-per-sample code within __init__(). Let’s remove
our previous custom class, and define a replacement:

>>> vdif.header.VDIF_HEADER_CLASSES.pop(0)
<class '__main__.DRAOVDIFHeader'>
>>> class DRAOVDIFHeaderEnhanced(vdif.header.VDIFHeader0):
... """DRAO VDIF Header
...
... An extension of EDV=0 which uses the thread_id to store link and slot
... numbers, and adds a user keyword (illegal in EDV0, but whatever) that
... identifies data taken at the same time.
...
... The header also corrects 'bits_per_sample' to be properly bps-1.
... """
... _header_parser = vdif.header.VDIFHeader0._header_parser + \
... vlbi.header.HeaderParser((('link', (3, 16, 4)),
... ('slot', (3, 20, 6)),
... ('eud2', (5, 0, 32))))
...
... def __init__(self, words, edv=None, verify=True, **kwargs):
... super(DRAOVDIFHeaderEnhanced, self).__init__(
... words, verify=False, **kwargs)
... self.mutable = True
... self['bits_per_sample'] = 3
...
... def verify(self):
... pass

If we had the whole corrupt file, this might be enough to use the stream reader without further modification. It turns
out, though, that the frame numbers are not monotonic and that the station ID changes between frames as well, so one
would be better off making a new copy. Here, we can at least now read frames:

>>> fh2 = vdif.open(SAMPLE_DRAO_CORRUPT, 'rb')
>>> frame0 = fh2.read_frame()
>>> np.all(frame0.data == payload0.data)
True
>>> fh2.close()

Reading frames using VDIFFileReader.read_frame will now work as well, but reading frame sets using
VDIFFileReader.read_frameset will still fail. This is because the frame and thread numbers that function relies

14.3. Replacing an Existing EDV 443



baseband Documentation, Release 3.1.0

on are meaningless for these headers, and grouping threads together using the link, slot and eud2 values should be
manually performed by the user.

444 Chapter 14. Supporting a New VDIF EDV



CHAPTER

FIFTEEN

RELEASE PROCEDURE

This procedure is based off of Astropy’s, and additionally uses information from the PyPI packaging tutorial.

15.1 Prerequisites

To make releases, you will need

• The twine package.

• An account on PyPI.

• Collaborator status on Baseband’s repository at mhvk/baseband to push new branches.

• An account on Read the Docs that has access to Baseband.

• Optionally, a GPG signing key associated with your GitHub account. While releases do not need to be signed,
we recommend doing so to ensure they are trustworthy. To make a GPG key and associate it with your GitHub
account, see the Astropy documentation.

15.2 Versioning

Baseband follows the semantic versioning specification:

major.minor.patch

where

• major number represents backward incompatible API changes.

• minor number represents feature updates to last major version.

• patch number represents bugfixes from last minor version.

Major and minor versions have their own release branches on GitHub that end with “x” (eg. v1.0.x, v1.1.x), while
specific releases are tagged commits within their corresponding branch (eg. v1.1.0 and v1.1.1 are tagged commits
within v1.1.x).

445

https://docs.astropy.org/en/stable/development/releasing.html
https://packaging.python.org/tutorials/packaging-projects/
https://pypi.org/project/twine/
https://pypi.org/
https://readthedocs.org/
https://help.github.com/articles/signing-commits-with-gpg/
https://docs.astropy.org/en/stable/development/releasing.html#creating-a-gpg-signing-key-and-a-signed-tag
https://semver.org/


baseband Documentation, Release 3.1.0

15.3 Procedure

The first two steps of the release procedure are different for major and minor releases than it is for patch releases.
Steps specifically for major/minor releases are labelled “m”, and patch ones labelled “p”.

15.3.1 1m. Preparing major/minor code for release

We begin in the main development branch (the local equivalent to mhvk/baseband:master). First, check the follow-
ing:

• Ensure tests pass. Run the test suite by running python3 setup.py test in the Baseband root directory.

• Update CHANGES.rst. All merge commits to master since the last release should be documented (except trivial
ones such as typo corrections). Since CHANGES.rst is updated for each merge commit, in practice it is only
necessary to change the date of the release you are working on from “unreleased” to the current date.

• Add authors and contributors to AUTHORS.rst. To list contributors, one can use:

git shortlog -n -s -e

This will also list contributors to astropy-helpers and the astropy template, who should not be added. If in doubt,
cross-reference with the authors of pull requests.

Once finished, git add any changes and make a commit:

git commit -m "Finalizing changelog and author list for v<version>"

For major/minor releases, the patch number is 0.

Submit the commit as a pull request to master.

15.3.2 1p. Cherry-pick code for a patch release

We begin by checking out the appropriate release branch:

git checkout v<version branch>.x

Bugfix merge commits are backported to this branch from master by way of git cherry-pick. First, find the SHA
hashes of the relevant merge commits in the main development branch. Then, for each:

git cherry-pick -m 1 <SHA-1>

For more information, see Astropy’s documentation.

Once you have cherry-picked, check the following:

• Ensure tests pass and documentation builds. Run the test suite by running python3 setup.py test, and
build documentation by running python3 setup.py build_docs, in the Baseband root directory.

• Update CHANGES.rst. Typically, merge commits record their changes, including any backported bugfixes, in
CHANGES.rst. Cherry-picking should add these records to this branch’s CHANGES.rst, but if not, manually add
them before making the commit (and manually remove any changes not relevant to this branch). Also, change
the date of the release you are working on from “unreleased” to the current date.

Commit your changes:

446 Chapter 15. Release Procedure

https://docs.astropy.org/en/stable/development/releasing.html#backporting-fixes-from-master


baseband Documentation, Release 3.1.0

git commit -m "Finalizing changelog for v<version>"

15.3.3 2m. Create a new release branch

Still in the main development branch, change the version keyword under the [[metadata]] section of setup.cfg
to:

version = <version>

and make a commmit:

git commit -m "Preparing v<version>."

Submit the commit as a pull request to master.

Once the pull request has been merged, make and enter a new release branch:

git checkout -b v<version branch>.x

15.3.4 2p. Append to the release branch

In the release branch, prepare the patch release commit by changing the version keyword under the [[metadata]]
section of setup.cfg to:

version = <version>

then make a new commmit:

git commit -m "Preparing v<version>."

15.3.5 3. Tag the release

Tag the commit made in step 2 as:

git tag -s v<version> -m "Tagging v<version>"

15.3.6 4. Clean and package the release

Checkout the tag:

git checkout v<version>

Clean the repository:

git clean -dfx
cd astropy_helpers; git clean -dfx; cd ..

and ensure the repository has the proper permissions:

umask 0022
chmod -R a+Xr .

15.3. Procedure 447



baseband Documentation, Release 3.1.0

Finally, package the release’s source code:

python setup.py build sdist

15.3.7 5. Test the release

We now test installing and running Baseband in clean virtual environments, to ensure there are no subtle bugs that
come from your customized development environment. Before creating the virtualenvs, we recommend checking if
the $PYTHONPATH environmental variable is set. If it is, set it to a null value (in bash, PYTHONPATH=) before proceeding.

To create the environments:

python3 -m venv --no-site-packages test_release

Now, for each environment, activate it, navigate to the Baseband root directory, and run the tests:

source <name_of_virtualenv>/bin/activate
cd <baseband_directory>
pip install dist/baseband-<version>.tar.gz
pip install pytest-astropy
cd ~/
python -c 'import baseband; baseband.test()'
deactivate

If the test suite raises any errors (at this point, likely dependency issues), delete the release tag:

git tag -d v<version>

For a major/minor release, delete the v<version branch>.x branch as well. Then, make the necessary changes
directly on the main development branch. Once the issues are fixed, repeat steps 2 - 6.

If the tests succeed, you may optionally re-run the cleaning and packaging code above following the tests:

git clean -dfx
cd astropy_helpers; git clean -dfx; cd ..
umask 0022
chmod -R a+Xr .
python setup.py build sdist

You may optionally sign the source as well:

gpg --detach-sign -a dist/baseband-<version>.tar.gz

15.3.8 7. Publish the release on GitHub

If you are working a major/minor release, first push the branch to upstream (assuming upstream is mhvk/baseband):

git push upstream v<version branch>.x

Push the tag to GitHub as well:

git push upstream v<version>

Go to the mhvk/baseband Releases section. Here, published releases are in shown in blue, and unpublished tags in
grey and in a much smaller font. To publish a release, click on the v<version> tag you just pushed, then click “Edit

448 Chapter 15. Release Procedure

https://github.com/mhvk/baseband/releases


baseband Documentation, Release 3.1.0

tag” (on the upper right). This takes you to a form where you can customize the release title and description. Leave
the title blank, in which case it is set to “v<version>”; you can leave the description blank as well if you wish. Finally,
click on “Publish release”. This takes you back to Releases, where you should see our new release in blue.

The Baseband GitHub repo automatically updates Baseband’s Zenodo repository for each published release. Check if
your release has made it to Zenodo by clicking the badge in Readme.rst.

15.3.9 8. Build the release wheel for PyPI

To build the release:

python setup.py bdist_wheel --universal

15.3.10 9. (Optional) test uploading the release

PyPI provides a test environment to safely try uploading new releases. To take advantage of this, use:

twine upload --repository-url https://test.pypi.org/legacy/ dist/baseband-<version>*

To test if this was successful, create a new virtualenv as above:

virtualenv --no-site-packages --python=python3 pypitest

Then (pip install pytest-astropy comes first because test.pypi does not contain recent versions of Astropy):

source <name_of_virtualenv>/bin/activate
pip install pytest-astropy
pip install --index-url https://test.pypi.org/simple/ baseband
python -c 'import baseband; baseband.test()'
deactivate

15.3.11 10. Upload to PyPI

Finally, upload the package to PyPI:

twine upload dist/baseband-<version>*

15.3.12 11. Check if Readthedocs has updated

Go to Read the Docs and check that the stable version points to the latest stable release. Each minor release has its
own version as well, which should be pointing to its latest patch release.

15.3. Procedure 449

https://guides.github.com/activities/citable-code/
https://zenodo.org/record/1322808
https://readthedocs.org/


baseband Documentation, Release 3.1.0

15.3.13 12m. Clean up master

In the main development branch, add the next major/minor release to CHANGES.rst. Also update the version keyword
in setup.cfg to:

version = <next major/minor version>.dev

Make a commmit:

git commit -m "Add v<next major/minor version> to the changelog."

Then submit a pull request to master.

15.3.14 12p. Update CHANGES.rst on master

Change the release date of the patch release in CHANGES.rst on master to the current date, then:

git commit -m "Added release date for v<version> to the changelog."

(Alternatively, git cherry-pick the changelog fix from the release branch back to the main development one.)

Then submit a pull request to master.

450 Chapter 15. Release Procedure



Part V

Project Details

451





baseband Documentation, Release 3.1.0

453

https://doi.org/10.5281/zenodo.1214268
https://travis-ci.org/mhvk/baseband
https://coveralls.io/github/mhvk/baseband
https://baseband.readthedocs.io/en/latest/?badge=latest


baseband Documentation, Release 3.1.0

454



CHAPTER

SIXTEEN

AUTHORS AND CREDITS

If you used this package in your research, please cite it via DOI 10.5281/zenodo.1214268.

16.1 Authors

• Marten van Kerkwijk (@mhvk)

• Chenchong Charles Zhu (@cczhu)

16.2 Other contributors (alphabetical)

• Rebecca Lin (@00rebe)

• Nikhil Mahajan (@theXYZT)

• Robert Main (@ramain)

• Dana Simard (@danasimard)

• George Stein (@georgestein)

If you have contributed to Baseband but are not listed above, please send one of the authors an e-mail, or open a pull
request for this page.

455

https://doi.org/10.5281/zenodo.1214268
https://doi.org/10.5281/zenodo.1214268
https://github.com/mhvk/baseband/edit/master/AUTHORS.rst
https://github.com/mhvk/baseband/edit/master/AUTHORS.rst


baseband Documentation, Release 3.1.0

456 Chapter 16. Authors and Credits



CHAPTER

SEVENTEEN

FULL CHANGELOG

17.1 3.1 (unreleaded)

17.1.1 Bug Fixes

• Frame rates are now calculated correctly also for Mark 4 data in which the first frame is the last within a second.
[#341]

• Fixed a bug where a VDIF header was not found correctly if the file pointer was very close to the start of a
header already. [#346]

• In VDIF header verification, include that the implied payload must have non-negative size. [#348]

• Mark 4 now checks by default (verify=True) that frames are ordered correctly. [#349]

• find_header will now always check that the frame corresponding to a header is complete (i.e., fits within the
file). [#354]

• The count argument to .read() no longer is changed in-place, making it safe to pass in array scalars or dimen-
sionless quantities. [#373]

17.1.2 Other Changes and Additions

• The Mark 4, Mark 5B, and VDIF stream readers are now able to replace missing pieces of files with zeros using
verify='fix'. This is also the new default; use verify=True for the old behaviour of raising an error on any
inconsistency. [#357]

• The VDIFFileReader gained a new get_thread_ids() method, which will scan through frames to determine
the threads present in the file. This is now used inside VDIFStreamReader and, combined with the above, allows
reading of files that have missing threads in their first frame set. [#361]

• The stream reader info now also checks whether streams are continuous by reading the first and last sample,
allowing a simple way to check whether the file will likely pose problems before possibly spending a lot of time
reading it. [#364]

• Much faster localization of Mark 5B frames. [#351]

• VLBI file readers have gained a new method locate_frames that finds frame starts near the current location.
[#354]

• For VLBI file readers, find_header now raises an exception if no frame is found (rather than return None).

• The Mark 4 file reader’s locate_frame has been deprecated. Its functionality is replaced by locate_frames
and find_header. [#354]

457

https://docs.python.org/3/library/constants.html#None


baseband Documentation, Release 3.1.0

• Custom stream readers can now override only part of reading a given frame and testing that it is the right one.
[#355]

• The HeaderParser class was refactored and simplified, making setting keys faster. [#356]

• info now also provides the number of frames in a file. [#364]

17.2 3.0 (2019-08-28)

• This version only supports python3.

17.2.1 New Features

• File information now includes whether a file can be read and decoded. The readable() method on stream
readers also includes whether the data in a file can be decoded. [#316]

17.2.2 Bug Fixes

• Empty GUPPI headers can now be created without having to pass in verify=False. This is needed for astropy
3.2, which initializes an empty header in its revamped .fromstring method. [#314]

• VDIF multichannel headers and payloads are now forced to have power-of-two bits per sample. [#315]

• Bits per complete sample for VDIF payloads are now calculated correctly also for non power-of-two bits per
sample. [#315]

• Guppi raw file info now presents the correct sample rate, corrected for overlap. [#319]

• All headers now check that samples_per_frame are set to possible numbers. [#325]

• Getting .info on closed files no longer leads to an error (though no information can be retrieved). [#326]

17.2.3 Other Changes and Additions

• Increased speed of VDIF stream reading by removing redundant verification. Reduces the overhead for verifi-
cation for VDIF CHIME data from 50% (factor 1.5) to 13%. [#321]

17.3 2.0 (2018-12-12)

• VDIF and Mark 5B readers and writers now support 1 bit per sample. [#277, #278]

17.3.1 Bug Fixes

• VDIF reader will now properly ignore corrupt last frames. [#273]

• Mark5B reader more robust against headers not being parsed correctly in Mark5BFileReader.find_header.
[#275]

• All stream readers now have a proper dtype attribute, not a corresponding np.float32 or np.complex64.
[#280]

• GUPPI stream readers no longer emit warnings on not quite FITS compliant headers. [#283]

458 Chapter 17. Full Changelog



baseband Documentation, Release 3.1.0

17.3.2 Other Changes and Additions

• Added release procedure to the documentation. [#268]

17.4 1.2 (2018-07-27)

17.4.1 New Features

• Expanded support for acccessing sequences of files to VLBI format openers and baseband.open. Enabled
baseband.guppi.open to open file sequences using string templates like with baseband.dada.open. [#254]

• Created baseband.helpers.sequentialfile.FileNameSequencer, a general-purpose filename sequencer
that can be passed to any format opener. [#253]

17.4.2 Other Changes and Additions

• Moved the Getting Started section to “Using Baseband”, and created a new quickstart tutorial under Getting
Started to better assist new users. [#260]

17.5 1.1.1 (2018-07-24)

17.5.1 Bug Fixes

• Ensure gsb times can be decoded with astropy-dev (which is to become astropy 3.1). [#249]

• Fixed rounding error when encoding 4-bit data using baseband.vlbi_base.encoding.encode_4bit_base.
[#250]

• Added GUPPI/PUPPI to the list of file formats used by baseband.open and baseband.file_info. [#251]

17.6 1.1 (2018-06-06)

17.6.1 New Features

• Added a new baseband.file_info function, which can be used to inspect data files. [#200]

• Added a general file opener, baseband.open which for a set of formats will check whether the file is of that
format, and then load it using the corresponding module. [#198]

• Allow users to pass a verify keyword to file openers reading streams. [#233]

• Added support for the GUPPI format. [#212]

• Enabled baseband.dada.open to read streams where the last frame has an incomplete payload. [#228]

17.4. 1.2 (2018-07-27) 459



baseband Documentation, Release 3.1.0

17.6.2 API Changes

• In analogy with Mark 5B, VDIF header time getting and setting now requires a frame rate rather than a sample
rate. [#217, #218]

• DADA and GUPPI now support passing either a start_time or offset (in addition to time) to set the start
time in the header. [#240]

17.6.3 Bug Fixes

17.6.4 Other Changes and Additions

• The baseband.data module with sample data files now has an explicit entry in the documentation. [#198]

• Increased speed of VLBI stream reading by changing the way header sync patterns are stored, and removing
redundant verification steps. VDIF sequential decode is now 5 - 10% faster (depending on the number of
threads). [#241]

17.7 1.0.1 (2018-06-04)

17.7.1 Bug Fixes

• Fixed a bug in baseband.dada.open where passing a squeeze setting is ignored when also passing header
keywords in ‘ws’ mode. [#211]

• Raise an exception rather than return incorrect times for Mark 5B files in which the fractional seconds are not
set. [#216]

17.7.2 Other Changes and Additions

• Fixed broken links and typos in the documentation. [#211]

17.8 1.0.0 (2018-04-09)

• Initial release.

460 Chapter 17. Full Changelog



CHAPTER

EIGHTEEN

LICENSES

18.1 Baseband License

Baseband is licensed under the GNU General Public License v3.0. The full text of the license can be found in LICENSE
under Baseband’s root directory.

461

https://www.gnu.org/licenses/gpl-3.0.en.html


baseband Documentation, Release 3.1.0

462 Chapter 18. Licenses



Part VI

Reference/API

463





CHAPTER

NINETEEN

BASEBAND PACKAGE

Radio baseband I/O.

19.1 Functions

file_info(name[, format]) Get format and other information from a baseband file.
open(name[, mode, format]) Open a baseband file (or sequence of files) for reading

or writing.
test(\*\*kwargs) Run the tests for the package.

19.1.1 file_info

baseband.file_info(name, format=('dada', 'mark4', 'mark5b', 'vdif', 'guppi', 'gsb'), **kwargs)
Get format and other information from a baseband file.

The keyword arguments will only be used if needed, so if one is unsure what format a file is, but knows it was
taken recently and has 8 channels, one would put in ref_time=Time('2015-01-01'), nchan=8. Alternatively,
and perhaps easier, one can first call the function without extra arguments in which case the result will describe
what is missing.

Parameters

name
[str or filehandle, or sequence of str] Raw file for which to obtain information. If a sequence
of files is passed, returns information from the first file (see Notes).

format
[str, tuple of str, optional] Formats to try. If not given, try all standard formats.

**kwargs
Any arguments that might help to get information. For instance, Mark 4 and Mark 5B do not
have complete timestamps, which can be addressed by passing in ref_time. Furthermore,
for Mark 5B, it is needed to pass in nchan. Arguments are checked for consistency with the
file even if not used (see notes below).

Returns

info
The information on the file, an instance of either VLBIFileReaderInfo or
VLBIStreamReaderInfo. Can be turned info a dict by calling it (i.e., info()).

465

https://docs.python.org/3/library/stdtypes.html#dict


baseband Documentation, Release 3.1.0

Notes

All keyword arguments passed in are classified, ending up in one of the following (mostly useful if the file could
be opened as a stream):

• used_kwargs: arguments that were needed to open the file.

• consistent_kwargs: not needed to open the file, but consistent.

• inconsistent_kwargs: not needed to open the file, and inconsistent.

• irrelevant_kwargs: provide information irrelevant for opening.

19.1.2 open

baseband.open(name, mode='rs', format=('dada', 'mark4', 'mark5b', 'vdif', 'guppi', 'gsb'), **kwargs)
Open a baseband file (or sequence of files) for reading or writing.

Opened as a binary file, one gets a wrapped filehandle that adds methods to read/write a frame. Opened as a
stream, the handle is wrapped further, and reading and writing to the file is done as if the file were a stream of
samples.

Parameters

name
[str or filehandle, or sequence of str] File name, filehandle, or sequence of file names. A
sequence may be a list or str of ordered filenames, or an instance of FileNameSequencer.

mode
[{‘rb’, ‘wb’, ‘rs’, or ‘ws’}, optional] Whether to open for reading or writing, and as a regular
binary file or as a stream. Default: ‘rs’, for reading a stream.

format
[str or tuple of str] The format the file is in. For reading, this can be a tuple of possible
formats, all of which will be tried in turn. By default, all supported formats are tried.

**kwargs
Additional arguments needed for opening the file as a stream. For most formats, trying
without these will raise an exception that tells which arguments are needed. Opening will
not succeed if any arguments are passed in that are inconsistent with the file, or are irrelevant
for opening the file.

19.1.3 test

baseband.test(**kwargs)
Run the tests for the package.

This method builds arguments for and then calls pytest.main.

Parameters

package
[str, optional] The name of a specific package to test, e.g. ‘io.fits’ or ‘utils’. Accepts comma
separated string to specify multiple packages. If nothing is specified all default tests are run.

466 Chapter 19. baseband Package



baseband Documentation, Release 3.1.0

args
[str, optional] Additional arguments to be passed to pytest.main in the args keyword
argument.

docs_path
[str, optional] The path to the documentation .rst files.

open_files
[bool, optional] Fail when any tests leave files open. Off by default, because this adds extra
run time to the test suite. Requires the psutil package.

parallel
[int or ‘auto’, optional] When provided, run the tests in parallel on the specified number
of CPUs. If parallel is 'auto', it will use the all the cores on the machine. Requires the
pytest-xdist plugin.

pastebin
[(‘failed’, ‘all’, None), optional] Convenience option for turning on py.test pastebin output.
Set to ‘failed’ to upload info for failed tests, or ‘all’ to upload info for all tests.

pdb
[bool, optional] Turn on PDB post-mortem analysis for failing tests. Same as specifying
--pdb in args.

pep8
[bool, optional] Turn on PEP8 checking via the pytest-pep8 plugin and disable normal tests.
Same as specifying --pep8 -k pep8 in args.

plugins
[list, optional] Plugins to be passed to pytest.main in the plugins keyword argument.

remote_data
[{‘none’, ‘astropy’, ‘any’}, optional] Controls whether to run tests marked with
@pytest.mark.remote_data. This can be set to run no tests with remote data (none), only
ones that use data from http://data.astropy.org (astropy), or all tests that use remote data
(any). The default is none.

repeat
[int, optional] If set, specifies how many times each test should be run. This is useful for
diagnosing sporadic failures.

skip_docs
[bool, optional] When True, skips running the doctests in the .rst files.

test_path
[str, optional] Specify location to test by path. May be a single file or directory. Must be
specified absolutely or relative to the calling directory.

verbose
[bool, optional] Convenience option to turn on verbose output from py.test. Passing True is
the same as specifying -v in args.

19.1. Functions 467

http://data.astropy.org
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True


baseband Documentation, Release 3.1.0

468 Chapter 19. baseband Package



PYTHON MODULE INDEX

b
baseband, 465
baseband.dada, 225
baseband.dada.base, 246
baseband.dada.frame, 243
baseband.dada.header, 236
baseband.dada.payload, 241
baseband.data, 429
baseband.gsb, 326
baseband.gsb.base, 355
baseband.gsb.frame, 351
baseband.gsb.header, 337
baseband.gsb.payload, 348
baseband.guppi, 267
baseband.guppi.base, 305
baseband.guppi.file_info, 302
baseband.guppi.frame, 299
baseband.guppi.header, 285
baseband.guppi.payload, 297
baseband.helpers, 376
baseband.helpers.sequentialfile, 376
baseband.mark4, 169
baseband.mark4.base, 203
baseband.mark4.file_info, 199
baseband.mark4.frame, 196
baseband.mark4.header, 182
baseband.mark4.payload, 193
baseband.mark5b, 124
baseband.mark5b.base, 151
baseband.mark5b.file_info, 149
baseband.mark5b.frame, 145
baseband.mark5b.header, 136
baseband.mark5b.payload, 142
baseband.vdif, 33
baseband.vdif.base, 105
baseband.vdif.file_info, 103
baseband.vdif.frame, 97
baseband.vdif.header, 48
baseband.vdif.payload, 93
baseband.vlbi_base, 383
baseband.vlbi_base.base, 397
baseband.vlbi_base.encoding, 420

baseband.vlbi_base.file_info, 411
baseband.vlbi_base.frame, 394
baseband.vlbi_base.header, 383
baseband.vlbi_base.payload, 392
baseband.vlbi_base.utils, 423

469



baseband Documentation, Release 3.1.0

470 Python Module Index



INDEX

Symbols
__call__() (baseband.guppi.file_info.GUPPIFileReaderInfo

method), 304
__call__() (baseband.mark4.file_info.Mark4FileReaderInfo

method), 202
__call__() (baseband.mark5b.file_info.Mark5BFileReaderInfo

method), 151
__call__() (baseband.vdif.file_info.VDIFFileReaderInfo

method), 105
__call__() (baseband.vlbi_base.file_info.VLBIFileReaderInfo

method), 417
__call__() (baseband.vlbi_base.file_info.VLBIInfoBase

method), 414
__call__() (baseband.vlbi_base.file_info.VLBIInfoMeta

method), 413
__call__() (baseband.vlbi_base.file_info.VLBIStreamReaderInfo

method), 420
__call__() (baseband.vlbi_base.utils.CRC method),

425
__call__() (baseband.vlbi_base.utils.CRCStack

method), 426

A
add_blank() (baseband.guppi.GUPPIHeader method),

275
add_blank() (baseband.guppi.header.GUPPIHeader

method), 289
add_comment() (baseband.guppi.GUPPIHeader

method), 275
add_comment() (baseband.guppi.header.GUPPIHeader

method), 289
add_history() (baseband.guppi.GUPPIHeader

method), 276
add_history() (baseband.guppi.header.GUPPIHeader

method), 289
append() (baseband.guppi.GUPPIHeader method), 276
append() (baseband.guppi.header.GUPPIHeader

method), 290
attr_names (baseband.guppi.file_info.GUPPIFileReaderInfo

attribute), 303
attr_names (baseband.mark4.file_info.Mark4FileReaderInfo

attribute), 201

attr_names (baseband.mark5b.file_info.Mark5BFileReaderInfo
attribute), 150

attr_names (baseband.vdif.file_info.VDIFFileReaderInfo
attribute), 104

attr_names (baseband.vlbi_base.file_info.VLBIFileReaderInfo
attribute), 416

attr_names (baseband.vlbi_base.file_info.VLBIInfoBase
attribute), 414

attr_names (baseband.vlbi_base.file_info.VLBIStreamReaderInfo
attribute), 419

B
baseband (module), 465
baseband.dada (module), 225
baseband.dada.base (module), 246
baseband.dada.frame (module), 243
baseband.dada.header (module), 236
baseband.dada.payload (module), 241
baseband.data (module), 429
baseband.gsb (module), 326
baseband.gsb.base (module), 355
baseband.gsb.frame (module), 351
baseband.gsb.header (module), 337
baseband.gsb.payload (module), 348
baseband.guppi (module), 267
baseband.guppi.base (module), 305
baseband.guppi.file_info (module), 302
baseband.guppi.frame (module), 299
baseband.guppi.header (module), 285
baseband.guppi.payload (module), 297
baseband.helpers (module), 376
baseband.helpers.sequentialfile (module), 376
baseband.mark4 (module), 169
baseband.mark4.base (module), 203
baseband.mark4.file_info (module), 199
baseband.mark4.frame (module), 196
baseband.mark4.header (module), 182
baseband.mark4.payload (module), 193
baseband.mark5b (module), 124
baseband.mark5b.base (module), 151
baseband.mark5b.file_info (module), 149
baseband.mark5b.frame (module), 145

471



baseband Documentation, Release 3.1.0

baseband.mark5b.header (module), 136
baseband.mark5b.payload (module), 142
baseband.vdif (module), 33
baseband.vdif.base (module), 105
baseband.vdif.file_info (module), 103
baseband.vdif.frame (module), 97
baseband.vdif.header (module), 48
baseband.vdif.payload (module), 93
baseband.vlbi_base (module), 383
baseband.vlbi_base.base (module), 397
baseband.vlbi_base.encoding (module), 420
baseband.vlbi_base.file_info (module), 411
baseband.vlbi_base.frame (module), 394
baseband.vlbi_base.header (module), 383
baseband.vlbi_base.payload (module), 392
baseband.vlbi_base.utils (module), 423
bcd_decode() (in module baseband.vlbi_base.utils), 424
bcd_encode() (in module baseband.vlbi_base.utils), 424
bps (baseband.dada.base.DADAStreamBase attribute),

256
bps (baseband.dada.base.DADAStreamReader attribute),

258
bps (baseband.dada.base.DADAStreamWriter attribute),

262
bps (baseband.dada.DADAHeader attribute), 232
bps (baseband.dada.header.DADAHeader attribute), 238
bps (baseband.gsb.base.GSBStreamBase attribute), 361
bps (baseband.gsb.base.GSBStreamReader attribute),

364
bps (baseband.gsb.base.GSBStreamWriter attribute), 368
bps (baseband.guppi.base.GUPPIStreamBase attribute),

312
bps (baseband.guppi.base.GUPPIStreamReader at-

tribute), 315
bps (baseband.guppi.base.GUPPIStreamWriter at-

tribute), 319
bps (baseband.guppi.file_info.GUPPIFileReaderInfo at-

tribute), 303
bps (baseband.guppi.GUPPIHeader attribute), 274
bps (baseband.guppi.header.GUPPIHeader attribute),

288
bps (baseband.mark4.base.Mark4StreamBase attribute),

212
bps (baseband.mark4.base.Mark4StreamReader at-

tribute), 215
bps (baseband.mark4.base.Mark4StreamWriter at-

tribute), 219
bps (baseband.mark4.file_info.Mark4FileReaderInfo at-

tribute), 201
bps (baseband.mark4.header.Mark4Header attribute),

188
bps (baseband.mark4.Mark4Header attribute), 176
bps (baseband.mark5b.base.Mark5BStreamBase at-

tribute), 158

bps (baseband.mark5b.base.Mark5BStreamReader at-
tribute), 160

bps (baseband.mark5b.base.Mark5BStreamWriter
attribute), 165

bps (baseband.mark5b.file_info.Mark5BFileReaderInfo
attribute), 150

bps (baseband.vdif.base.VDIFStreamBase attribute), 113
bps (baseband.vdif.base.VDIFStreamReader attribute),

116
bps (baseband.vdif.base.VDIFStreamWriter attribute),

120
bps (baseband.vdif.file_info.VDIFFileReaderInfo at-

tribute), 104
bps (baseband.vdif.header.VDIFBaseHeader attribute),

55
bps (baseband.vdif.header.VDIFHeader attribute), 50
bps (baseband.vdif.header.VDIFHeader0 attribute), 69
bps (baseband.vdif.header.VDIFHeader1 attribute), 73
bps (baseband.vdif.header.VDIFHeader2 attribute), 78
bps (baseband.vdif.header.VDIFHeader3 attribute), 83
bps (baseband.vdif.header.VDIFLegacyHeader at-

tribute), 64
bps (baseband.vdif.header.VDIFMark5BHeader at-

tribute), 88
bps (baseband.vdif.header.VDIFSampleRateHeader at-

tribute), 59
bps (baseband.vdif.VDIFHeader attribute), 42
bps (baseband.vlbi_base.base.VLBIStreamBase at-

tribute), 404
bps (baseband.vlbi_base.base.VLBIStreamReaderBase

attribute), 406
bps (baseband.vlbi_base.base.VLBIStreamWriterBase

attribute), 410
bps (baseband.vlbi_base.file_info.VLBIFileReaderInfo

attribute), 416
bps (baseband.vlbi_base.file_info.VLBIStreamReaderInfo

attribute), 419
byte_array() (in module baseband.vlbi_base.utils), 424

C
cache (baseband.gsb.header.TimeGSB attribute), 338
cards (baseband.guppi.GUPPIHeader attribute), 274
cards (baseband.guppi.header.GUPPIHeader attribute),

288
channel, 25
channels_first (baseband.guppi.GUPPIHeader

attribute), 274
channels_first (base-

band.guppi.header.GUPPIHeader attribute),
288

check() (baseband.vlbi_base.utils.CRC method), 425
check() (baseband.vlbi_base.utils.CRCStack method),

426

472 Index



baseband Documentation, Release 3.1.0

checks (baseband.guppi.file_info.GUPPIFileReaderInfo
attribute), 303

checks (baseband.mark4.file_info.Mark4FileReaderInfo
attribute), 201

checks (baseband.mark5b.file_info.Mark5BFileReaderInfo
attribute), 150

checks (baseband.vdif.file_info.VDIFFileReaderInfo at-
tribute), 104

checks (baseband.vlbi_base.file_info.VLBIFileReaderInfo
attribute), 416

checks (baseband.vlbi_base.file_info.VLBIStreamReaderInfo
attribute), 419

clear() (baseband.dada.DADAHeader method), 232
clear() (baseband.dada.header.DADAHeader method),

239
clear() (baseband.guppi.GUPPIHeader method), 276
clear() (baseband.guppi.header.GUPPIHeader

method), 290
clear() (baseband.vlbi_base.header.HeaderParser

method), 388
close() (baseband.dada.base.DADAFileReader

method), 252
close() (baseband.dada.base.DADAFileWriter method),

254
close() (baseband.dada.base.DADAStreamBase

method), 256
close() (baseband.dada.base.DADAStreamReader

method), 260
close() (baseband.dada.base.DADAStreamWriter

method), 263
close() (baseband.gsb.base.GSBFileReader method),

359
close() (baseband.gsb.base.GSBFileWriter method),

360
close() (baseband.gsb.base.GSBStreamBase method),

362
close() (baseband.gsb.base.GSBStreamReader

method), 365
close() (baseband.gsb.base.GSBStreamWriter method),

369
close() (baseband.gsb.base.GSBTimeStampIO method),

357
close() (baseband.guppi.base.GUPPIFileReader

method), 308
close() (baseband.guppi.base.GUPPIFileWriter

method), 311
close() (baseband.guppi.base.GUPPIStreamBase

method), 313
close() (baseband.guppi.base.GUPPIStreamReader

method), 317
close() (baseband.guppi.base.GUPPIStreamWriter

method), 320
close() (baseband.helpers.sequentialfile.SequentialFileBase

method), 378

close() (baseband.helpers.sequentialfile.SequentialFileReader
method), 379

close() (baseband.helpers.sequentialfile.SequentialFileWriter
method), 381

close() (baseband.mark4.base.Mark4FileReader
method), 208

close() (baseband.mark4.base.Mark4FileWriter
method), 211

close() (baseband.mark4.base.Mark4StreamBase
method), 213

close() (baseband.mark4.base.Mark4StreamReader
method), 216

close() (baseband.mark4.base.Mark4StreamWriter
method), 220

close() (baseband.mark5b.base.Mark5BFileReader
method), 155

close() (baseband.mark5b.base.Mark5BFileWriter
method), 156

close() (baseband.mark5b.base.Mark5BStreamBase
method), 158

close() (baseband.mark5b.base.Mark5BStreamReader
method), 162

close() (baseband.mark5b.base.Mark5BStreamWriter
method), 165

close() (baseband.vdif.base.VDIFFileReader method),
108

close() (baseband.vdif.base.VDIFFileWriter method),
112

close() (baseband.vdif.base.VDIFStreamBase method),
114

close() (baseband.vdif.base.VDIFStreamReader
method), 118

close() (baseband.vdif.base.VDIFStreamWriter
method), 121

close() (baseband.vlbi_base.base.VLBIFileBase
method), 399

close() (baseband.vlbi_base.base.VLBIFileReaderBase
method), 402

close() (baseband.vlbi_base.base.VLBIStreamBase
method), 405

close() (baseband.vlbi_base.base.VLBIStreamReaderBase
method), 408

close() (baseband.vlbi_base.base.VLBIStreamWriterBase
method), 410

comments (baseband.guppi.GUPPIHeader attribute),
274

comments (baseband.guppi.header.GUPPIHeader
attribute), 288

complete sample, 25
complex_data (baseband.dada.base.DADAStreamBase

attribute), 256
complex_data (baseband.dada.base.DADAStreamReader

attribute), 258
complex_data (baseband.dada.base.DADAStreamWriter

Index 473



baseband Documentation, Release 3.1.0

attribute), 262
complex_data (baseband.dada.DADAHeader attribute),

232
complex_data (baseband.dada.header.DADAHeader at-

tribute), 238
complex_data (baseband.gsb.base.GSBStreamBase at-

tribute), 361
complex_data (baseband.gsb.base.GSBStreamReader

attribute), 364
complex_data (baseband.gsb.base.GSBStreamWriter at-

tribute), 368
complex_data (baseband.guppi.base.GUPPIStreamBase

attribute), 312
complex_data (baseband.guppi.base.GUPPIStreamReader

attribute), 315
complex_data (baseband.guppi.base.GUPPIStreamWriter

attribute), 319
complex_data (baseband.guppi.file_info.GUPPIFileReaderInfo

attribute), 303
complex_data (baseband.guppi.GUPPIHeader at-

tribute), 274
complex_data (baseband.guppi.header.GUPPIHeader

attribute), 288
complex_data (baseband.mark4.base.Mark4StreamBase

attribute), 212
complex_data (baseband.mark4.base.Mark4StreamReader

attribute), 215
complex_data (baseband.mark4.base.Mark4StreamWriter

attribute), 219
complex_data (baseband.mark4.file_info.Mark4FileReaderInfo

attribute), 201
complex_data (baseband.mark5b.base.Mark5BStreamBase

attribute), 158
complex_data (baseband.mark5b.base.Mark5BStreamReader

attribute), 160
complex_data (baseband.mark5b.base.Mark5BStreamWriter

attribute), 165
complex_data (baseband.mark5b.file_info.Mark5BFileReaderInfo

attribute), 150
complex_data (baseband.vdif.base.VDIFStreamBase at-

tribute), 113
complex_data (baseband.vdif.base.VDIFStreamReader

attribute), 116
complex_data (baseband.vdif.base.VDIFStreamWriter

attribute), 120
complex_data (baseband.vdif.file_info.VDIFFileReaderInfo

attribute), 104
complex_data (baseband.vlbi_base.base.VLBIStreamBase

attribute), 404
complex_data (baseband.vlbi_base.base.VLBIStreamReaderBase

attribute), 406
complex_data (baseband.vlbi_base.base.VLBIStreamWriterBase

attribute), 410
complex_data (baseband.vlbi_base.file_info.VLBIFileReaderInfo

attribute), 416
complex_data (baseband.vlbi_base.file_info.VLBIStreamReaderInfo

attribute), 419
component, 25
continuous (baseband.vlbi_base.file_info.VLBIStreamReaderInfo

attribute), 419
converters (baseband.mark4.header.Mark4Header at-

tribute), 188
converters (baseband.mark4.Mark4Header attribute),

176
copy() (baseband.dada.DADAHeader method), 232
copy() (baseband.dada.header.DADAHeader method),

239
copy() (baseband.gsb.GSBHeader method), 333
copy() (baseband.gsb.header.GSBHeader method), 340
copy() (baseband.gsb.header.GSBPhasedHeader

method), 346
copy() (baseband.gsb.header.GSBRawdumpHeader

method), 343
copy() (baseband.guppi.GUPPIHeader method), 276
copy() (baseband.guppi.header.GUPPIHeader method),

290
copy() (baseband.mark4.header.Mark4Header method),

189
copy() (baseband.mark4.header.Mark4TrackHeader

method), 184
copy() (baseband.mark4.Mark4Header method), 177
copy() (baseband.mark5b.header.Mark5BHeader

method), 139
copy() (baseband.mark5b.Mark5BHeader method), 132
copy() (baseband.vdif.header.VDIFBaseHeader

method), 55
copy() (baseband.vdif.header.VDIFHeader method), 51
copy() (baseband.vdif.header.VDIFHeader0 method), 69
copy() (baseband.vdif.header.VDIFHeader1 method), 74
copy() (baseband.vdif.header.VDIFHeader2 method), 79
copy() (baseband.vdif.header.VDIFHeader3 method), 84
copy() (baseband.vdif.header.VDIFLegacyHeader

method), 65
copy() (baseband.vdif.header.VDIFMark5BHeader

method), 89
copy() (baseband.vdif.header.VDIFSampleRateHeader

method), 60
copy() (baseband.vdif.VDIFHeader method), 43
copy() (baseband.vlbi_base.header.HeaderParser

method), 388
copy() (baseband.vlbi_base.header.VLBIHeaderBase

method), 390
count() (baseband.guppi.GUPPIHeader method), 276
count() (baseband.guppi.header.GUPPIHeader

method), 290
CRC (class in baseband.vlbi_base.utils), 424
CRC12 (in module baseband.mark4.header), 192
crc12 (in module baseband.mark4.header), 192

474 Index



baseband Documentation, Release 3.1.0

CRC16 (in module baseband.mark5b.header), 141
crc16 (in module baseband.mark5b.header), 141
CRCStack (class in baseband.vlbi_base.utils), 425

D
DADAFileNameSequencer (class in baseband.dada.base),

248
DADAFileReader (class in baseband.dada.base), 249
DADAFileWriter (class in baseband.dada.base), 254
DADAFrame (class in baseband.dada), 227
DADAFrame (class in baseband.dada.frame), 243
DADAHeader (class in baseband.dada), 230
DADAHeader (class in baseband.dada.header), 237
DADAPayload (class in baseband.dada), 234
DADAPayload (class in baseband.dada.payload), 241
DADAStreamBase (class in baseband.dada.base), 255
DADAStreamReader (class in baseband.dada.base), 257
DADAStreamWriter (class in baseband.dada.base), 261
data (baseband.dada.DADAFrame attribute), 229
data (baseband.dada.DADAPayload attribute), 235
data (baseband.dada.frame.DADAFrame attribute), 245
data (baseband.dada.payload.DADAPayload attribute),

242
data (baseband.gsb.frame.GSBFrame attribute), 353
data (baseband.gsb.GSBFrame attribute), 330
data (baseband.gsb.GSBPayload attribute), 336
data (baseband.gsb.payload.GSBPayload attribute), 350
data (baseband.guppi.frame.GUPPIFrame attribute),

301
data (baseband.guppi.GUPPIFrame attribute), 270
data (baseband.guppi.GUPPIPayload attribute), 284
data (baseband.guppi.payload.GUPPIPayload at-

tribute), 298
data (baseband.mark4.frame.Mark4Frame attribute),

197
data (baseband.mark4.Mark4Frame attribute), 173
data (baseband.mark4.Mark4Payload attribute), 181
data (baseband.mark4.payload.Mark4Payload at-

tribute), 195
data (baseband.mark5b.frame.Mark5BFrame attribute),

147
data (baseband.mark5b.Mark5BFrame attribute), 128
data (baseband.mark5b.Mark5BPayload attribute), 135
data (baseband.mark5b.payload.Mark5BPayload at-

tribute), 144
data (baseband.vdif.frame.VDIFFrame attribute), 98
data (baseband.vdif.frame.VDIFFrameSet attribute), 101
data (baseband.vdif.payload.VDIFPayload attribute), 95
data (baseband.vdif.VDIFFrame attribute), 37
data (baseband.vdif.VDIFFrameSet attribute), 39
data (baseband.vdif.VDIFPayload attribute), 46
data (baseband.vlbi_base.frame.VLBIFrameBase at-

tribute), 396

data (baseband.vlbi_base.payload.VLBIPayloadBase at-
tribute), 393

data frame, 25
data frameset, 25
decade (baseband.mark4.file_info.Mark4FileReaderInfo

attribute), 201
decade (baseband.mark4.header.Mark4Header at-

tribute), 188
decade (baseband.mark4.header.Mark4TrackHeader at-

tribute), 184
decade (baseband.mark4.Mark4Header attribute), 176
decodable (baseband.guppi.file_info.GUPPIFileReaderInfo

attribute), 303
decodable (baseband.mark4.file_info.Mark4FileReaderInfo

attribute), 201
decodable (baseband.mark5b.file_info.Mark5BFileReaderInfo

attribute), 150
decodable (baseband.vdif.file_info.VDIFFileReaderInfo

attribute), 104
decodable (baseband.vlbi_base.file_info.VLBIFileReaderInfo

attribute), 416
decode_1bit() (in module baseband.mark5b.payload),

143
decode_1bit() (in module baseband.vdif.payload), 94
decode_2bit() (in module baseband.mark5b.payload),

143
decode_2bit() (in module baseband.vdif.payload), 94
decode_4bit() (in module baseband.vdif.payload), 94
decode_8bit() (in module base-

band.vlbi_base.encoding), 421
decode_8chan_2bit_fanout4() (in module base-

band.mark4.payload), 193
decoder_levels (in module base-

band.vlbi_base.encoding), 423
defaults (baseband.vlbi_base.header.HeaderParser at-

tribute), 387
deleter() (baseband.vlbi_base.header.fixedvalue

method), 386
determine_ntrack() (base-

band.mark4.base.Mark4FileReader method),
208

dtype (baseband.dada.base.DADAStreamReader at-
tribute), 258

dtype (baseband.dada.DADAFrame attribute), 229
dtype (baseband.dada.DADAPayload attribute), 235
dtype (baseband.dada.frame.DADAFrame attribute),

245
dtype (baseband.dada.payload.DADAPayload attribute),

242
dtype (baseband.gsb.base.GSBStreamReader attribute),

364
dtype (baseband.gsb.frame.GSBFrame attribute), 353
dtype (baseband.gsb.GSBFrame attribute), 330
dtype (baseband.gsb.GSBPayload attribute), 336

Index 475



baseband Documentation, Release 3.1.0

dtype (baseband.gsb.payload.GSBPayload attribute),
350

dtype (baseband.guppi.base.GUPPIStreamReader at-
tribute), 315

dtype (baseband.guppi.frame.GUPPIFrame attribute),
301

dtype (baseband.guppi.GUPPIFrame attribute), 270
dtype (baseband.guppi.GUPPIPayload attribute), 284
dtype (baseband.guppi.payload.GUPPIPayload at-

tribute), 298
dtype (baseband.mark4.base.Mark4StreamReader at-

tribute), 215
dtype (baseband.mark4.frame.Mark4Frame attribute),

197
dtype (baseband.mark4.Mark4Frame attribute), 173
dtype (baseband.mark4.Mark4Payload attribute), 181
dtype (baseband.mark4.payload.Mark4Payload at-

tribute), 195
dtype (baseband.mark5b.base.Mark5BStreamReader at-

tribute), 160
dtype (baseband.mark5b.frame.Mark5BFrame at-

tribute), 147
dtype (baseband.mark5b.Mark5BFrame attribute), 128
dtype (baseband.mark5b.Mark5BPayload attribute), 135
dtype (baseband.mark5b.payload.Mark5BPayload at-

tribute), 144
dtype (baseband.vdif.base.VDIFStreamReader at-

tribute), 116
dtype (baseband.vdif.frame.VDIFFrame attribute), 98
dtype (baseband.vdif.frame.VDIFFrameSet attribute),

101
dtype (baseband.vdif.payload.VDIFPayload attribute),

95
dtype (baseband.vdif.VDIFFrame attribute), 37
dtype (baseband.vdif.VDIFFrameSet attribute), 39
dtype (baseband.vdif.VDIFPayload attribute), 46
dtype (baseband.vlbi_base.base.VLBIStreamReaderBase

attribute), 406
dtype (baseband.vlbi_base.frame.VLBIFrameBase at-

tribute), 396
dtype (baseband.vlbi_base.payload.VLBIPayloadBase

attribute), 393

E
edv (baseband.vdif.file_info.VDIFFileReaderInfo at-

tribute), 104
edv (baseband.vdif.header.VDIFBaseHeader attribute),

55
edv (baseband.vdif.header.VDIFHeader attribute), 50
edv (baseband.vdif.header.VDIFHeader0 attribute), 69
edv (baseband.vdif.header.VDIFHeader1 attribute), 73
edv (baseband.vdif.header.VDIFHeader2 attribute), 78
edv (baseband.vdif.header.VDIFHeader3 attribute), 83

edv (baseband.vdif.header.VDIFLegacyHeader at-
tribute), 64

edv (baseband.vdif.header.VDIFMark5BHeader at-
tribute), 88

edv (baseband.vdif.header.VDIFSampleRateHeader at-
tribute), 59

edv (baseband.vdif.VDIFHeader attribute), 42
EIGHT_BIT_1_SIGMA (in module base-

band.vlbi_base.encoding), 423
elementary sample, 25
encode_1bit() (in module baseband.mark5b.payload),

143
encode_1bit() (in module baseband.vdif.payload), 94
encode_1bit_base() (in module base-

band.vlbi_base.encoding), 420
encode_2bit() (in module baseband.mark5b.payload),

143
encode_2bit() (in module baseband.vdif.payload), 94
encode_2bit_base() (in module base-

band.vlbi_base.encoding), 421
encode_4bit() (in module baseband.vdif.payload), 94
encode_4bit_base() (in module base-

band.vlbi_base.encoding), 421
encode_8bit() (in module base-

band.vlbi_base.encoding), 422
encode_8chan_2bit_fanout4() (in module base-

band.mark4.payload), 194
errors (baseband.guppi.file_info.GUPPIFileReaderInfo

attribute), 303
errors (baseband.mark4.file_info.Mark4FileReaderInfo

attribute), 201
errors (baseband.mark5b.file_info.Mark5BFileReaderInfo

attribute), 150
errors (baseband.vdif.file_info.VDIFFileReaderInfo at-

tribute), 104
errors (baseband.vlbi_base.file_info.VLBIFileReaderInfo

attribute), 416
errors (baseband.vlbi_base.file_info.VLBIStreamReaderInfo

attribute), 419
extend() (baseband.guppi.GUPPIHeader method), 277
extend() (baseband.guppi.header.GUPPIHeader

method), 290

F
fanout (baseband.mark4.header.Mark4Header at-

tribute), 188
fanout (baseband.mark4.Mark4Header attribute), 176
fdel (baseband.vlbi_base.header.fixedvalue attribute),

385
fget (baseband.vlbi_base.header.fixedvalue attribute),

385
file_info (baseband.vlbi_base.file_info.VLBIStreamReaderInfo

attribute), 419
file_info() (in module baseband), 465

476 Index



baseband Documentation, Release 3.1.0

file_size (baseband.helpers.sequentialfile.SequentialFileReader
attribute), 379

FileNameSequencer (class in base-
band.helpers.sequentialfile), 377

fill_value (baseband.dada.base.DADAStreamReader
attribute), 258

fill_value (baseband.dada.DADAFrame attribute), 229
fill_value (baseband.dada.frame.DADAFrame at-

tribute), 245
fill_value (baseband.gsb.base.GSBStreamReader at-

tribute), 364
fill_value (baseband.gsb.frame.GSBFrame attribute),

353
fill_value (baseband.gsb.GSBFrame attribute), 330
fill_value (baseband.guppi.base.GUPPIStreamReader

attribute), 315
fill_value (baseband.guppi.frame.GUPPIFrame at-

tribute), 301
fill_value (baseband.guppi.GUPPIFrame attribute),

270
fill_value (baseband.mark4.base.Mark4StreamReader

attribute), 215
fill_value (baseband.mark4.frame.Mark4Frame

attribute), 197
fill_value (baseband.mark4.Mark4Frame attribute),

173
fill_value (baseband.mark5b.base.Mark5BStreamReader

attribute), 160
fill_value (baseband.mark5b.frame.Mark5BFrame at-

tribute), 147
fill_value (baseband.mark5b.Mark5BFrame attribute),

128
fill_value (baseband.vdif.base.VDIFStreamReader at-

tribute), 116
fill_value (baseband.vdif.frame.VDIFFrame attribute),

98
fill_value (baseband.vdif.frame.VDIFFrameSet at-

tribute), 101
fill_value (baseband.vdif.VDIFFrame attribute), 37
fill_value (baseband.vdif.VDIFFrameSet attribute), 39
fill_value (baseband.vlbi_base.base.VLBIStreamReaderBase

attribute), 406
fill_value (baseband.vlbi_base.frame.VLBIFrameBase

attribute), 396
find_header() (baseband.dada.base.DADAFileReader

method), 252
find_header() (baseband.guppi.base.GUPPIFileReader

method), 308
find_header() (baseband.mark4.base.Mark4FileReader

method), 208
find_header() (baseband.mark5b.base.Mark5BFileReader

method), 155
find_header() (baseband.vdif.base.VDIFFileReader

method), 108

find_header() (baseband.vlbi_base.base.VLBIFileReaderBase
method), 402

fixedvalue (class in baseband.vlbi_base.header), 385
flush() (baseband.gsb.base.GSBStreamWriter method),

369
format (baseband.guppi.file_info.GUPPIFileReaderInfo

attribute), 303
format (baseband.mark4.file_info.Mark4FileReaderInfo

attribute), 201
format (baseband.mark5b.file_info.Mark5BFileReaderInfo

attribute), 150
format (baseband.vdif.file_info.VDIFFileReaderInfo at-

tribute), 104
format (baseband.vlbi_base.file_info.VLBIFileReaderInfo

attribute), 416
format (baseband.vlbi_base.file_info.VLBIStreamReaderInfo

attribute), 419
format_string() (baseband.gsb.header.TimeGSB

method), 339
FOUR_BIT_1_SIGMA (in module base-

band.vlbi_base.encoding), 423
fraction (baseband.mark4.header.Mark4Header at-

tribute), 188
fraction (baseband.mark4.header.Mark4TrackHeader

attribute), 184
fraction (baseband.mark4.Mark4Header attribute), 176
fraction (baseband.mark5b.header.Mark5BHeader at-

tribute), 138
fraction (baseband.mark5b.Mark5BHeader attribute),

131
fraction (baseband.vdif.header.VDIFMark5BHeader

attribute), 88
frame0 (baseband.guppi.file_info.GUPPIFileReaderInfo

attribute), 303
frame0 (baseband.mark4.file_info.Mark4FileReaderInfo

attribute), 202
frame0 (baseband.mark5b.file_info.Mark5BFileReaderInfo

attribute), 150
frame0 (baseband.vdif.file_info.VDIFFileReaderInfo at-

tribute), 104
frame0 (baseband.vlbi_base.file_info.VLBIFileReaderInfo

attribute), 416
frame_nbytes (baseband.dada.DADAHeader attribute),

232
frame_nbytes (baseband.dada.header.DADAHeader at-

tribute), 238
frame_nbytes (baseband.guppi.GUPPIHeader at-

tribute), 275
frame_nbytes (baseband.guppi.header.GUPPIHeader

attribute), 288
frame_nbytes (baseband.mark4.header.Mark4Header

attribute), 188
frame_nbytes (baseband.mark4.Mark4Header at-

tribute), 176

Index 477



baseband Documentation, Release 3.1.0

frame_nbytes (baseband.mark5b.header.Mark5BHeader
attribute), 138

frame_nbytes (baseband.mark5b.Mark5BHeader
attribute), 131

frame_nbytes (baseband.vdif.header.VDIFBaseHeader
attribute), 55

frame_nbytes (baseband.vdif.header.VDIFHeader at-
tribute), 50

frame_nbytes (baseband.vdif.header.VDIFHeader0 at-
tribute), 69

frame_nbytes (baseband.vdif.header.VDIFHeader1 at-
tribute), 73

frame_nbytes (baseband.vdif.header.VDIFHeader2 at-
tribute), 78

frame_nbytes (baseband.vdif.header.VDIFHeader3 at-
tribute), 83

frame_nbytes (baseband.vdif.header.VDIFLegacyHeader
attribute), 64

frame_nbytes (baseband.vdif.header.VDIFMark5BHeader
attribute), 88

frame_nbytes (baseband.vdif.header.VDIFSampleRateHeader
attribute), 59

frame_nbytes (baseband.vdif.VDIFHeader attribute),
42

frame_rate (baseband.guppi.file_info.GUPPIFileReaderInfo
attribute), 304

frame_rate (baseband.mark4.file_info.Mark4FileReaderInfo
attribute), 202

frame_rate (baseband.mark5b.file_info.Mark5BFileReaderInfo
attribute), 150

frame_rate (baseband.vdif.file_info.VDIFFileReaderInfo
attribute), 104

frame_rate (baseband.vdif.header.VDIFHeader1
attribute), 73

frame_rate (baseband.vdif.header.VDIFHeader3
attribute), 83

frame_rate (baseband.vdif.header.VDIFSampleRateHeader
attribute), 59

frame_rate (baseband.vlbi_base.file_info.VLBIFileReaderInfo
attribute), 416

from_mark5b_frame() (base-
band.vdif.frame.VDIFFrame class method),
99

from_mark5b_frame() (baseband.vdif.VDIFFrame class
method), 37

from_mark5b_header() (base-
band.vdif.header.VDIFBaseHeader class
method), 55

from_mark5b_header() (base-
band.vdif.header.VDIFHeader class method),
51

from_mark5b_header() (base-
band.vdif.header.VDIFHeader0 class method),
69

from_mark5b_header() (base-
band.vdif.header.VDIFHeader1 class method),
74

from_mark5b_header() (base-
band.vdif.header.VDIFHeader2 class method),
79

from_mark5b_header() (base-
band.vdif.header.VDIFHeader3 class method),
84

from_mark5b_header() (base-
band.vdif.header.VDIFLegacyHeader class
method), 65

from_mark5b_header() (base-
band.vdif.header.VDIFMark5BHeader class
method), 89

from_mark5b_header() (base-
band.vdif.header.VDIFSampleRateHeader
class method), 60

from_mark5b_header() (baseband.vdif.VDIFHeader
class method), 43

fromdata() (baseband.dada.DADAFrame class method),
229

fromdata() (baseband.dada.DADAPayload class
method), 235

fromdata() (baseband.dada.frame.DADAFrame class
method), 245

fromdata() (baseband.dada.payload.DADAPayload
class method), 242

fromdata() (baseband.gsb.frame.GSBFrame class
method), 353

fromdata() (baseband.gsb.GSBFrame class method),
330

fromdata() (baseband.gsb.GSBPayload class method),
336

fromdata() (baseband.gsb.payload.GSBPayload class
method), 350

fromdata() (baseband.guppi.frame.GUPPIFrame class
method), 301

fromdata() (baseband.guppi.GUPPIFrame class
method), 271

fromdata() (baseband.guppi.GUPPIPayload class
method), 284

fromdata() (baseband.guppi.payload.GUPPIPayload
class method), 298

fromdata() (baseband.mark4.frame.Mark4Frame class
method), 198

fromdata() (baseband.mark4.Mark4Frame class
method), 173

fromdata() (baseband.mark4.Mark4Payload class
method), 181

fromdata() (baseband.mark4.payload.Mark4Payload
class method), 195

fromdata() (baseband.mark5b.frame.Mark5BFrame
class method), 148

478 Index



baseband Documentation, Release 3.1.0

fromdata() (baseband.mark5b.Mark5BFrame class
method), 128

fromdata() (baseband.mark5b.Mark5BPayload class
method), 135

fromdata() (baseband.mark5b.payload.Mark5BPayload
class method), 145

fromdata() (baseband.vdif.frame.VDIFFrame class
method), 99

fromdata() (baseband.vdif.frame.VDIFFrameSet class
method), 101

fromdata() (baseband.vdif.payload.VDIFPayload class
method), 96

fromdata() (baseband.vdif.VDIFFrame class method),
37

fromdata() (baseband.vdif.VDIFFrameSet class
method), 40

fromdata() (baseband.vdif.VDIFPayload class method),
47

fromdata() (baseband.vlbi_base.frame.VLBIFrameBase
class method), 396

fromdata() (baseband.vlbi_base.payload.VLBIPayloadBase
class method), 393

fromfile() (baseband.dada.DADAFrame class method),
229

fromfile() (baseband.dada.DADAHeader class
method), 232

fromfile() (baseband.dada.DADAPayload class
method), 235

fromfile() (baseband.dada.frame.DADAFrame class
method), 245

fromfile() (baseband.dada.header.DADAHeader class
method), 239

fromfile() (baseband.dada.payload.DADAPayload
class method), 242

fromfile() (baseband.gsb.frame.GSBFrame class
method), 353

fromfile() (baseband.gsb.GSBFrame class method),
331

fromfile() (baseband.gsb.GSBHeader class method),
333

fromfile() (baseband.gsb.GSBPayload class method),
336

fromfile() (baseband.gsb.header.GSBHeader class
method), 340

fromfile() (baseband.gsb.header.GSBPhasedHeader
class method), 346

fromfile() (baseband.gsb.header.GSBRawdumpHeader
class method), 343

fromfile() (baseband.gsb.payload.GSBPayload class
method), 350

fromfile() (baseband.guppi.frame.GUPPIFrame class
method), 301

fromfile() (baseband.guppi.GUPPIFrame class
method), 271

fromfile() (baseband.guppi.GUPPIHeader class
method), 277

fromfile() (baseband.guppi.GUPPIPayload class
method), 284

fromfile() (baseband.guppi.header.GUPPIHeader
class method), 291

fromfile() (baseband.guppi.payload.GUPPIPayload
class method), 298

fromfile() (baseband.mark4.frame.Mark4Frame class
method), 198

fromfile() (baseband.mark4.header.Mark4Header
class method), 189

fromfile() (baseband.mark4.header.Mark4TrackHeader
class method), 184

fromfile() (baseband.mark4.Mark4Frame class
method), 173

fromfile() (baseband.mark4.Mark4Header class
method), 177

fromfile() (baseband.mark4.Mark4Payload class
method), 181

fromfile() (baseband.mark4.payload.Mark4Payload
class method), 195

fromfile() (baseband.mark5b.frame.Mark5BFrame
class method), 148

fromfile() (baseband.mark5b.header.Mark5BHeader
class method), 139

fromfile() (baseband.mark5b.Mark5BFrame class
method), 129

fromfile() (baseband.mark5b.Mark5BHeader class
method), 132

fromfile() (baseband.mark5b.Mark5BPayload class
method), 135

fromfile() (baseband.mark5b.payload.Mark5BPayload
class method), 145

fromfile() (baseband.vdif.frame.VDIFFrame class
method), 99

fromfile() (baseband.vdif.frame.VDIFFrameSet class
method), 102

fromfile() (baseband.vdif.header.VDIFBaseHeader
class method), 56

fromfile() (baseband.vdif.header.VDIFHeader class
method), 51

fromfile() (baseband.vdif.header.VDIFHeader0 class
method), 70

fromfile() (baseband.vdif.header.VDIFHeader1 class
method), 75

fromfile() (baseband.vdif.header.VDIFHeader2 class
method), 79

fromfile() (baseband.vdif.header.VDIFHeader3 class
method), 84

fromfile() (baseband.vdif.header.VDIFLegacyHeader
class method), 65

fromfile() (baseband.vdif.header.VDIFMark5BHeader
class method), 89

Index 479



baseband Documentation, Release 3.1.0

fromfile() (baseband.vdif.header.VDIFSampleRateHeader
class method), 61

fromfile() (baseband.vdif.payload.VDIFPayload class
method), 96

fromfile() (baseband.vdif.VDIFFrame class method),
37

fromfile() (baseband.vdif.VDIFFrameSet class
method), 40

fromfile() (baseband.vdif.VDIFHeader class method),
43

fromfile() (baseband.vdif.VDIFPayload class method),
47

fromfile() (baseband.vlbi_base.frame.VLBIFrameBase
class method), 397

fromfile() (baseband.vlbi_base.header.VLBIHeaderBase
class method), 390

fromfile() (baseband.vlbi_base.payload.VLBIPayloadBase
class method), 394

fromkeys() (baseband.dada.DADAHeader class
method), 233

fromkeys() (baseband.dada.header.DADAHeader class
method), 239

fromkeys() (baseband.gsb.GSBHeader class method),
333

fromkeys() (baseband.gsb.header.GSBHeader class
method), 340

fromkeys() (baseband.gsb.header.GSBPhasedHeader
class method), 346

fromkeys() (baseband.gsb.header.GSBRawdumpHeader
class method), 343

fromkeys() (baseband.guppi.GUPPIHeader class
method), 277

fromkeys() (baseband.guppi.header.GUPPIHeader
class method), 291

fromkeys() (baseband.mark4.header.Mark4Header
class method), 189

fromkeys() (baseband.mark4.header.Mark4TrackHeader
class method), 184

fromkeys() (baseband.mark4.Mark4Header class
method), 177

fromkeys() (baseband.mark5b.header.Mark5BHeader
class method), 139

fromkeys() (baseband.mark5b.Mark5BHeader class
method), 132

fromkeys() (baseband.vdif.header.VDIFBaseHeader
class method), 56

fromkeys() (baseband.vdif.header.VDIFHeader class
method), 51

fromkeys() (baseband.vdif.header.VDIFHeader0 class
method), 70

fromkeys() (baseband.vdif.header.VDIFHeader1 class
method), 75

fromkeys() (baseband.vdif.header.VDIFHeader2 class
method), 79

fromkeys() (baseband.vdif.header.VDIFHeader3 class
method), 84

fromkeys() (baseband.vdif.header.VDIFLegacyHeader
class method), 65

fromkeys() (baseband.vdif.header.VDIFMark5BHeader
class method), 89

fromkeys() (baseband.vdif.header.VDIFSampleRateHeader
class method), 61

fromkeys() (baseband.vdif.VDIFHeader class method),
43

fromkeys() (baseband.vlbi_base.header.HeaderParser
method), 388

fromkeys() (baseband.vlbi_base.header.VLBIHeaderBase
class method), 390

fromstring() (baseband.guppi.GUPPIHeader class
method), 278

fromstring() (baseband.guppi.header.GUPPIHeader
class method), 291

fromtextfile() (baseband.guppi.GUPPIHeader class
method), 278

fromtextfile() (base-
band.guppi.header.GUPPIHeader class
method), 292

fromvalues() (baseband.dada.DADAHeader class
method), 233

fromvalues() (baseband.dada.header.DADAHeader
class method), 239

fromvalues() (baseband.gsb.GSBHeader class method),
333

fromvalues() (baseband.gsb.header.GSBHeader class
method), 341

fromvalues() (baseband.gsb.header.GSBPhasedHeader
class method), 347

fromvalues() (baseband.gsb.header.GSBRawdumpHeader
class method), 343

fromvalues() (baseband.guppi.GUPPIHeader class
method), 279

fromvalues() (baseband.guppi.header.GUPPIHeader
class method), 292

fromvalues() (baseband.mark4.header.Mark4Header
class method), 190

fromvalues() (baseband.mark4.header.Mark4TrackHeader
class method), 185

fromvalues() (baseband.mark4.Mark4Header class
method), 177

fromvalues() (baseband.mark5b.header.Mark5BHeader
class method), 139

fromvalues() (baseband.mark5b.Mark5BHeader class
method), 132

fromvalues() (baseband.vdif.header.VDIFBaseHeader
class method), 56

fromvalues() (baseband.vdif.header.VDIFHeader class
method), 52

fromvalues() (baseband.vdif.header.VDIFHeader0

480 Index



baseband Documentation, Release 3.1.0

class method), 70
fromvalues() (baseband.vdif.header.VDIFHeader1

class method), 75
fromvalues() (baseband.vdif.header.VDIFHeader2

class method), 80
fromvalues() (baseband.vdif.header.VDIFHeader3

class method), 84
fromvalues() (baseband.vdif.header.VDIFLegacyHeader

class method), 65
fromvalues() (baseband.vdif.header.VDIFMark5BHeader

class method), 90
fromvalues() (baseband.vdif.header.VDIFSampleRateHeader

class method), 61
fromvalues() (baseband.vdif.VDIFHeader class

method), 44
fromvalues() (baseband.vlbi_base.header.VLBIHeaderBase

class method), 390
fset (baseband.vlbi_base.header.fixedvalue attribute),

385

G
get() (baseband.dada.DADAHeader method), 233
get() (baseband.dada.header.DADAHeader method),

239
get() (baseband.guppi.GUPPIHeader method), 279
get() (baseband.guppi.header.GUPPIHeader method),

293
get() (baseband.vlbi_base.header.HeaderParser

method), 388
get_default() (in module baseband.vlbi_base.header),

384
get_frame_rate() (base-

band.dada.base.DADAFileReader method),
252

get_frame_rate() (base-
band.gsb.base.GSBTimeStampIO method),
357

get_frame_rate() (base-
band.guppi.base.GUPPIFileReader method),
309

get_frame_rate() (base-
band.mark4.base.Mark4FileReader method),
208

get_frame_rate() (base-
band.mark5b.base.Mark5BFileReader
method), 155

get_frame_rate() (base-
band.vdif.base.VDIFFileReader method),
109

get_frame_rate() (base-
band.vlbi_base.base.VLBIFileReaderBase
method), 402

get_thread_ids() (base-
band.vdif.base.VDIFFileReader method),

109
get_time() (baseband.mark4.header.Mark4Header

method), 190
get_time() (baseband.mark4.header.Mark4TrackHeader

method), 185
get_time() (baseband.mark4.Mark4Header method),

178
get_time() (baseband.mark5b.header.Mark5BHeader

method), 139
get_time() (baseband.mark5b.Mark5BHeader method),

132
get_time() (baseband.vdif.header.VDIFBaseHeader

method), 57
get_time() (baseband.vdif.header.VDIFHeader

method), 52
get_time() (baseband.vdif.header.VDIFHeader0

method), 71
get_time() (baseband.vdif.header.VDIFHeader1

method), 75
get_time() (baseband.vdif.header.VDIFHeader2

method), 80
get_time() (baseband.vdif.header.VDIFHeader3

method), 85
get_time() (baseband.vdif.header.VDIFLegacyHeader

method), 66
get_time() (baseband.vdif.header.VDIFMark5BHeader

method), 90
get_time() (baseband.vdif.header.VDIFSampleRateHeader

method), 61
get_time() (baseband.vdif.VDIFHeader method), 44
getter() (baseband.vlbi_base.header.fixedvalue

method), 386
gps_time (baseband.gsb.header.GSBPhasedHeader at-

tribute), 346
gps_time (baseband.gsb.header.GSBRawdumpHeader

attribute), 343
GSBFileReader (class in baseband.gsb.base), 358
GSBFileWriter (class in baseband.gsb.base), 359
GSBFrame (class in baseband.gsb), 328
GSBFrame (class in baseband.gsb.frame), 351
GSBHeader (class in baseband.gsb), 332
GSBHeader (class in baseband.gsb.header), 339
GSBPayload (class in baseband.gsb), 335
GSBPayload (class in baseband.gsb.payload), 349
GSBPhasedHeader (class in baseband.gsb.header), 345
GSBRawdumpHeader (class in baseband.gsb.header), 342
GSBStreamBase (class in baseband.gsb.base), 360
GSBStreamReader (class in baseband.gsb.base), 362
GSBStreamWriter (class in baseband.gsb.base), 366
GSBTimeStampIO (class in baseband.gsb.base), 357
GUPPIFileNameSequencer (class in base-

band.guppi.base), 307
GUPPIFileReader (class in baseband.guppi.base), 308
GUPPIFileReaderInfo (class in base-

Index 481



baseband Documentation, Release 3.1.0

band.guppi.file_info), 303
GUPPIFileWriter (class in baseband.guppi.base), 310
GUPPIFrame (class in baseband.guppi), 269
GUPPIFrame (class in baseband.guppi.frame), 299
GUPPIHeader (class in baseband.guppi), 272
GUPPIHeader (class in baseband.guppi.header), 285
GUPPIPayload (class in baseband.guppi), 283
GUPPIPayload (class in baseband.guppi.payload), 297
GUPPIStreamBase (class in baseband.guppi.base), 312
GUPPIStreamReader (class in baseband.guppi.base), 313
GUPPIStreamWriter (class in baseband.guppi.base), 318

H
header, 25
header0 (baseband.dada.base.DADAStreamBase at-

tribute), 256
header0 (baseband.dada.base.DADAStreamReader at-

tribute), 258
header0 (baseband.dada.base.DADAStreamWriter at-

tribute), 262
header0 (baseband.gsb.base.GSBStreamBase attribute),

361
header0 (baseband.gsb.base.GSBStreamReader at-

tribute), 364
header0 (baseband.gsb.base.GSBStreamWriter at-

tribute), 368
header0 (baseband.guppi.base.GUPPIStreamBase at-

tribute), 312
header0 (baseband.guppi.base.GUPPIStreamReader at-

tribute), 315
header0 (baseband.guppi.base.GUPPIStreamWriter at-

tribute), 319
header0 (baseband.guppi.file_info.GUPPIFileReaderInfo

attribute), 304
header0 (baseband.mark4.base.Mark4StreamBase at-

tribute), 212
header0 (baseband.mark4.base.Mark4StreamReader at-

tribute), 215
header0 (baseband.mark4.base.Mark4StreamWriter at-

tribute), 219
header0 (baseband.mark4.file_info.Mark4FileReaderInfo

attribute), 202
header0 (baseband.mark5b.base.Mark5BStreamBase at-

tribute), 158
header0 (baseband.mark5b.base.Mark5BStreamReader

attribute), 160
header0 (baseband.mark5b.base.Mark5BStreamWriter

attribute), 165
header0 (baseband.mark5b.file_info.Mark5BFileReaderInfo

attribute), 150
header0 (baseband.vdif.base.VDIFStreamBase at-

tribute), 113
header0 (baseband.vdif.base.VDIFStreamReader at-

tribute), 116

header0 (baseband.vdif.base.VDIFStreamWriter at-
tribute), 120

header0 (baseband.vdif.file_info.VDIFFileReaderInfo
attribute), 104

header0 (baseband.vlbi_base.base.VLBIStreamBase at-
tribute), 404

header0 (baseband.vlbi_base.base.VLBIStreamReaderBase
attribute), 406

header0 (baseband.vlbi_base.base.VLBIStreamWriterBase
attribute), 410

header0 (baseband.vlbi_base.file_info.VLBIFileReaderInfo
attribute), 416

HeaderNotFoundError, 398
HeaderParser (class in baseband.vlbi_base.header), 386

I
index() (baseband.guppi.GUPPIHeader method), 279
index() (baseband.guppi.header.GUPPIHeader

method), 293
infer_decade() (base-

band.mark4.header.Mark4Header method),
190

infer_decade() (base-
band.mark4.header.Mark4TrackHeader
method), 185

infer_decade() (baseband.mark4.Mark4Header
method), 178

infer_kday() (baseband.mark5b.header.Mark5BHeader
method), 140

infer_kday() (baseband.mark5b.Mark5BHeader
method), 133

infer_kday() (baseband.vdif.header.VDIFMark5BHeader
method), 90

info (baseband.dada.base.DADAFileReader attribute),
250

info (baseband.dada.base.DADAStreamReader at-
tribute), 258

info (baseband.gsb.base.GSBStreamReader attribute),
364

info (baseband.gsb.base.GSBTimeStampIO attribute),
357

info (baseband.guppi.base.GUPPIFileReader attribute),
308

info (baseband.guppi.base.GUPPIStreamReader at-
tribute), 315

info (baseband.mark4.base.Mark4FileReader attribute),
206

info (baseband.mark4.base.Mark4StreamReader at-
tribute), 215

info (baseband.mark5b.base.Mark5BFileReader at-
tribute), 155

info (baseband.mark5b.base.Mark5BStreamReader at-
tribute), 160

482 Index



baseband Documentation, Release 3.1.0

info (baseband.vdif.base.VDIFFileReader attribute),
108

info (baseband.vdif.base.VDIFStreamReader attribute),
116

info (baseband.vlbi_base.base.VLBIFileReaderBase at-
tribute), 400

info (baseband.vlbi_base.base.VLBIStreamReaderBase
attribute), 406

info_item (class in baseband.vlbi_base.file_info), 412
init_luts() (in module baseband.mark4.payload), 193
init_luts() (in module baseband.mark5b.payload),

142
init_luts() (in module baseband.vdif.payload), 93
insert() (baseband.guppi.GUPPIHeader method), 279
insert() (baseband.guppi.header.GUPPIHeader

method), 293
invariant_pattern() (baseband.gsb.GSBHeader class

method), 333
invariant_pattern() (base-

band.gsb.header.GSBHeader class method),
341

invariant_pattern() (base-
band.gsb.header.GSBPhasedHeader class
method), 347

invariant_pattern() (base-
band.gsb.header.GSBRawdumpHeader class
method), 344

invariant_pattern() (base-
band.mark4.header.Mark4Header class
method), 190

invariant_pattern() (base-
band.mark4.header.Mark4TrackHeader class
method), 185

invariant_pattern() (baseband.mark4.Mark4Header
class method), 178

invariant_pattern() (base-
band.mark5b.header.Mark5BHeader class
method), 140

invariant_pattern() (base-
band.mark5b.Mark5BHeader class method),
133

invariant_pattern() (base-
band.vdif.header.VDIFBaseHeader class
method), 57

invariant_pattern() (base-
band.vdif.header.VDIFHeader class method),
52

invariant_pattern() (base-
band.vdif.header.VDIFHeader0 class method),
71

invariant_pattern() (base-
band.vdif.header.VDIFHeader1 class method),
76

invariant_pattern() (base-

band.vdif.header.VDIFHeader2 class method),
80

invariant_pattern() (base-
band.vdif.header.VDIFHeader3 class method),
85

invariant_pattern() (base-
band.vdif.header.VDIFLegacyHeader class
method), 66

invariant_pattern() (base-
band.vdif.header.VDIFMark5BHeader class
method), 91

invariant_pattern() (base-
band.vdif.header.VDIFSampleRateHeader
class method), 62

invariant_pattern() (baseband.vdif.VDIFHeader
class method), 44

invariant_pattern() (base-
band.vlbi_base.header.VLBIHeaderBase
class method), 390

invariants() (baseband.gsb.GSBHeader class method),
334

invariants() (baseband.gsb.header.GSBHeader class
method), 341

invariants() (baseband.gsb.header.GSBPhasedHeader
class method), 347

invariants() (baseband.gsb.header.GSBRawdumpHeader
class method), 344

invariants() (baseband.mark4.header.Mark4Header
class method), 191

invariants() (baseband.mark4.header.Mark4TrackHeader
class method), 186

invariants() (baseband.mark4.Mark4Header class
method), 179

invariants() (baseband.mark5b.header.Mark5BHeader
class method), 140

invariants() (baseband.mark5b.Mark5BHeader class
method), 133

invariants() (baseband.vdif.header.VDIFBaseHeader
class method), 57

invariants() (baseband.vdif.header.VDIFHeader class
method), 53

invariants() (baseband.vdif.header.VDIFHeader0
class method), 71

invariants() (baseband.vdif.header.VDIFHeader1
class method), 76

invariants() (baseband.vdif.header.VDIFHeader2
class method), 81

invariants() (baseband.vdif.header.VDIFHeader3
class method), 85

invariants() (baseband.vdif.header.VDIFLegacyHeader
class method), 67

invariants() (baseband.vdif.header.VDIFMark5BHeader
class method), 91

invariants() (baseband.vdif.header.VDIFSampleRateHeader

Index 483



baseband Documentation, Release 3.1.0

class method), 62
invariants() (baseband.vdif.VDIFHeader class

method), 45
invariants() (baseband.vlbi_base.header.VLBIHeaderBase

class method), 391
items() (baseband.dada.DADAHeader method), 233
items() (baseband.dada.header.DADAHeader method),

239
items() (baseband.guppi.GUPPIHeader method), 280
items() (baseband.guppi.header.GUPPIHeader

method), 293
items() (baseband.vlbi_base.header.HeaderParser

method), 388

J
jd1 (baseband.gsb.header.TimeGSB attribute), 338
jd2 (baseband.gsb.header.TimeGSB attribute), 338
jd2_filled (baseband.gsb.header.TimeGSB attribute),

338
jday (baseband.mark5b.header.Mark5BHeader at-

tribute), 138
jday (baseband.mark5b.Mark5BHeader attribute), 131
jday (baseband.vdif.header.VDIFMark5BHeader at-

tribute), 88

K
kday (baseband.mark5b.file_info.Mark5BFileReaderInfo

attribute), 150
kday (baseband.mark5b.header.Mark5BHeader at-

tribute), 138
kday (baseband.mark5b.Mark5BHeader attribute), 131
kday (baseband.vdif.header.VDIFMark5BHeader at-

tribute), 88
keys() (baseband.dada.DADAFrame method), 230
keys() (baseband.dada.DADAHeader method), 233
keys() (baseband.dada.frame.DADAFrame method),

246
keys() (baseband.dada.header.DADAHeader method),

239
keys() (baseband.gsb.frame.GSBFrame method), 354
keys() (baseband.gsb.GSBFrame method), 331
keys() (baseband.gsb.GSBHeader method), 334
keys() (baseband.gsb.header.GSBHeader method), 341
keys() (baseband.gsb.header.GSBPhasedHeader

method), 347
keys() (baseband.gsb.header.GSBRawdumpHeader

method), 344
keys() (baseband.guppi.frame.GUPPIFrame method),

302
keys() (baseband.guppi.GUPPIFrame method), 271
keys() (baseband.guppi.GUPPIHeader method), 280
keys() (baseband.guppi.header.GUPPIHeader method),

293

keys() (baseband.mark4.frame.Mark4Frame method),
198

keys() (baseband.mark4.header.Mark4Header method),
191

keys() (baseband.mark4.header.Mark4TrackHeader
method), 186

keys() (baseband.mark4.Mark4Frame method), 174
keys() (baseband.mark4.Mark4Header method), 179
keys() (baseband.mark5b.frame.Mark5BFrame

method), 148
keys() (baseband.mark5b.header.Mark5BHeader

method), 140
keys() (baseband.mark5b.Mark5BFrame method), 129
keys() (baseband.mark5b.Mark5BHeader method), 133
keys() (baseband.vdif.frame.VDIFFrame method), 99
keys() (baseband.vdif.frame.VDIFFrameSet method),

102
keys() (baseband.vdif.header.VDIFBaseHeader

method), 57
keys() (baseband.vdif.header.VDIFHeader method), 53
keys() (baseband.vdif.header.VDIFHeader0 method), 71
keys() (baseband.vdif.header.VDIFHeader1 method), 76
keys() (baseband.vdif.header.VDIFHeader2 method), 81
keys() (baseband.vdif.header.VDIFHeader3 method), 86
keys() (baseband.vdif.header.VDIFLegacyHeader

method), 67
keys() (baseband.vdif.header.VDIFMark5BHeader

method), 91
keys() (baseband.vdif.header.VDIFSampleRateHeader

method), 62
keys() (baseband.vdif.VDIFFrame method), 38
keys() (baseband.vdif.VDIFFrameSet method), 41
keys() (baseband.vdif.VDIFHeader method), 45
keys() (baseband.vlbi_base.frame.VLBIFrameBase

method), 397
keys() (baseband.vlbi_base.header.HeaderParser

method), 388
keys() (baseband.vlbi_base.header.VLBIHeaderBase

method), 391

L
lcm() (in module baseband.vlbi_base.utils), 423
locate_frame() (base-

band.mark4.base.Mark4FileReader method),
208

locate_frames() (base-
band.dada.base.DADAFileReader method),
252

locate_frames() (base-
band.guppi.base.GUPPIFileReader method),
309

locate_frames() (base-
band.mark4.base.Mark4FileReader method),
209

484 Index



baseband Documentation, Release 3.1.0

locate_frames() (base-
band.mark5b.base.Mark5BFileReader
method), 155

locate_frames() (baseband.vdif.base.VDIFFileReader
method), 109

locate_frames() (base-
band.vlbi_base.base.VLBIFileReaderBase
method), 402

M
make_opener() (in module baseband.vlbi_base.base),

398
make_parser() (in module baseband.vlbi_base.header),

383
make_setter() (in module baseband.vlbi_base.header),

384
Mark4FileReader (class in baseband.mark4.base), 205
Mark4FileReaderInfo (class in base-

band.mark4.file_info), 199
Mark4FileWriter (class in baseband.mark4.base), 210
Mark4Frame (class in baseband.mark4), 171
Mark4Frame (class in baseband.mark4.frame), 196
Mark4Header (class in baseband.mark4), 174
Mark4Header (class in baseband.mark4.header), 186
Mark4Payload (class in baseband.mark4), 180
Mark4Payload (class in baseband.mark4.payload), 194
Mark4StreamBase (class in baseband.mark4.base), 211
Mark4StreamReader (class in baseband.mark4.base),

213
Mark4StreamWriter (class in baseband.mark4.base),

218
Mark4TrackHeader (class in baseband.mark4.header),

183
Mark5BFileReader (class in baseband.mark5b.base),

154
Mark5BFileReaderInfo (class in base-

band.mark5b.file_info), 149
Mark5BFileWriter (class in baseband.mark5b.base),

156
Mark5BFrame (class in baseband.mark5b), 127
Mark5BFrame (class in baseband.mark5b.frame), 146
Mark5BHeader (class in baseband.mark5b), 129
Mark5BHeader (class in baseband.mark5b.header), 136
Mark5BPayload (class in baseband.mark5b), 134
Mark5BPayload (class in baseband.mark5b.payload),

144
Mark5BStreamBase (class in baseband.mark5b.base),

157
Mark5BStreamReader (class in baseband.mark5b.base),

159
Mark5BStreamWriter (class in baseband.mark5b.base),

163
mask (baseband.gsb.header.TimeGSB attribute), 338

mask_if_needed() (baseband.gsb.header.TimeGSB
method), 339

masked (baseband.gsb.header.TimeGSB attribute), 338
memmap() (baseband.helpers.sequentialfile.SequentialFileBase

method), 378
memmap() (baseband.helpers.sequentialfile.SequentialFileReader

method), 379
memmap() (baseband.helpers.sequentialfile.SequentialFileWriter

method), 381
memmap_frame() (baseband.dada.base.DADAFileWriter

method), 254
memmap_frame() (base-

band.guppi.base.GUPPIFileWriter method),
311

missing (baseband.guppi.file_info.GUPPIFileReaderInfo
attribute), 304

missing (baseband.mark4.file_info.Mark4FileReaderInfo
attribute), 202

missing (baseband.mark5b.file_info.Mark5BFileReaderInfo
attribute), 150

missing (baseband.vdif.file_info.VDIFFileReaderInfo
attribute), 104

missing (baseband.vlbi_base.file_info.VLBIFileReaderInfo
attribute), 417

mode (baseband.gsb.GSBHeader attribute), 333
mode (baseband.gsb.header.GSBHeader attribute), 340
mode (baseband.gsb.header.GSBPhasedHeader at-

tribute), 346
mode (baseband.gsb.header.GSBRawdumpHeader at-

tribute), 343
move_to_end() (baseband.dada.DADAHeader method),

233
move_to_end() (baseband.dada.header.DADAHeader

method), 239
move_to_end() (baseband.vlbi_base.header.HeaderParser

method), 388
mro() (baseband.vlbi_base.file_info.VLBIInfoMeta

method), 413
mutable (baseband.gsb.GSBHeader attribute), 333
mutable (baseband.gsb.header.GSBHeader attribute),

340
mutable (baseband.gsb.header.GSBPhasedHeader at-

tribute), 346
mutable (baseband.gsb.header.GSBRawdumpHeader at-

tribute), 343
mutable (baseband.mark4.header.Mark4Header at-

tribute), 188
mutable (baseband.mark4.header.Mark4TrackHeader

attribute), 184
mutable (baseband.mark4.Mark4Header attribute), 176
mutable (baseband.mark5b.header.Mark5BHeader at-

tribute), 138
mutable (baseband.mark5b.Mark5BHeader attribute),

131

Index 485



baseband Documentation, Release 3.1.0

mutable (baseband.vdif.header.VDIFBaseHeader at-
tribute), 55

mutable (baseband.vdif.header.VDIFHeader attribute),
50

mutable (baseband.vdif.header.VDIFHeader0 attribute),
69

mutable (baseband.vdif.header.VDIFHeader1 attribute),
73

mutable (baseband.vdif.header.VDIFHeader2 attribute),
78

mutable (baseband.vdif.header.VDIFHeader3 attribute),
83

mutable (baseband.vdif.header.VDIFLegacyHeader at-
tribute), 64

mutable (baseband.vdif.header.VDIFMark5BHeader at-
tribute), 88

mutable (baseband.vdif.header.VDIFSampleRateHeader
attribute), 59

mutable (baseband.vdif.VDIFHeader attribute), 42
mutable (baseband.vlbi_base.header.VLBIHeaderBase

attribute), 390

N
name (baseband.gsb.header.TimeGSB attribute), 338
nbytes (baseband.dada.DADAFrame attribute), 229
nbytes (baseband.dada.DADAHeader attribute), 232
nbytes (baseband.dada.DADAPayload attribute), 235
nbytes (baseband.dada.frame.DADAFrame attribute),

245
nbytes (baseband.dada.header.DADAHeader attribute),

238
nbytes (baseband.dada.payload.DADAPayload at-

tribute), 242
nbytes (baseband.gsb.frame.GSBFrame attribute), 353
nbytes (baseband.gsb.GSBFrame attribute), 330
nbytes (baseband.gsb.GSBHeader attribute), 333
nbytes (baseband.gsb.GSBPayload attribute), 336
nbytes (baseband.gsb.header.GSBHeader attribute), 340
nbytes (baseband.gsb.header.GSBPhasedHeader at-

tribute), 346
nbytes (baseband.gsb.header.GSBRawdumpHeader at-

tribute), 343
nbytes (baseband.gsb.payload.GSBPayload attribute),

350
nbytes (baseband.guppi.frame.GUPPIFrame attribute),

301
nbytes (baseband.guppi.GUPPIFrame attribute), 270
nbytes (baseband.guppi.GUPPIHeader attribute), 275
nbytes (baseband.guppi.GUPPIPayload attribute), 284
nbytes (baseband.guppi.header.GUPPIHeader at-

tribute), 288
nbytes (baseband.guppi.payload.GUPPIPayload at-

tribute), 298

nbytes (baseband.mark4.frame.Mark4Frame attribute),
197

nbytes (baseband.mark4.header.Mark4Header at-
tribute), 188

nbytes (baseband.mark4.header.Mark4TrackHeader at-
tribute), 184

nbytes (baseband.mark4.Mark4Frame attribute), 173
nbytes (baseband.mark4.Mark4Header attribute), 176
nbytes (baseband.mark4.Mark4Payload attribute), 181
nbytes (baseband.mark4.payload.Mark4Payload at-

tribute), 195
nbytes (baseband.mark5b.frame.Mark5BFrame at-

tribute), 147
nbytes (baseband.mark5b.header.Mark5BHeader

attribute), 138
nbytes (baseband.mark5b.Mark5BFrame attribute), 128
nbytes (baseband.mark5b.Mark5BHeader attribute),

131
nbytes (baseband.mark5b.Mark5BPayload attribute),

135
nbytes (baseband.mark5b.payload.Mark5BPayload at-

tribute), 144
nbytes (baseband.vdif.frame.VDIFFrame attribute), 98
nbytes (baseband.vdif.frame.VDIFFrameSet attribute),

101
nbytes (baseband.vdif.header.VDIFBaseHeader at-

tribute), 55
nbytes (baseband.vdif.header.VDIFHeader attribute), 50
nbytes (baseband.vdif.header.VDIFHeader0 attribute),

69
nbytes (baseband.vdif.header.VDIFHeader1 attribute),

73
nbytes (baseband.vdif.header.VDIFHeader2 attribute),

78
nbytes (baseband.vdif.header.VDIFHeader3 attribute),

83
nbytes (baseband.vdif.header.VDIFLegacyHeader at-

tribute), 64
nbytes (baseband.vdif.header.VDIFMark5BHeader at-

tribute), 88
nbytes (baseband.vdif.header.VDIFSampleRateHeader

attribute), 59
nbytes (baseband.vdif.payload.VDIFPayload attribute),

95
nbytes (baseband.vdif.VDIFFrame attribute), 37
nbytes (baseband.vdif.VDIFFrameSet attribute), 39
nbytes (baseband.vdif.VDIFHeader attribute), 42
nbytes (baseband.vdif.VDIFPayload attribute), 46
nbytes (baseband.vlbi_base.frame.VLBIFrameBase at-

tribute), 396
nbytes (baseband.vlbi_base.header.VLBIHeaderBase at-

tribute), 390
nbytes (baseband.vlbi_base.payload.VLBIPayloadBase

attribute), 393

486 Index



baseband Documentation, Release 3.1.0

nchan (baseband.guppi.GUPPIHeader attribute), 275
nchan (baseband.guppi.header.GUPPIHeader attribute),

288
nchan (baseband.mark4.header.Mark4Header attribute),

188
nchan (baseband.mark4.Mark4Header attribute), 176
nchan (baseband.mark5b.file_info.Mark5BFileReaderInfo

attribute), 150
nchan (baseband.vdif.header.VDIFBaseHeader at-

tribute), 55
nchan (baseband.vdif.header.VDIFHeader attribute), 50
nchan (baseband.vdif.header.VDIFHeader0 attribute), 69
nchan (baseband.vdif.header.VDIFHeader1 attribute), 73
nchan (baseband.vdif.header.VDIFHeader2 attribute), 78
nchan (baseband.vdif.header.VDIFHeader3 attribute), 83
nchan (baseband.vdif.header.VDIFLegacyHeader at-

tribute), 64
nchan (baseband.vdif.header.VDIFMark5BHeader at-

tribute), 88
nchan (baseband.vdif.header.VDIFSampleRateHeader

attribute), 59
nchan (baseband.vdif.VDIFHeader attribute), 42
ndim (baseband.dada.base.DADAStreamReader at-

tribute), 259
ndim (baseband.dada.DADAFrame attribute), 229
ndim (baseband.dada.DADAPayload attribute), 235
ndim (baseband.dada.frame.DADAFrame attribute), 245
ndim (baseband.dada.payload.DADAPayload attribute),

242
ndim (baseband.gsb.base.GSBStreamReader attribute),

364
ndim (baseband.gsb.frame.GSBFrame attribute), 353
ndim (baseband.gsb.GSBFrame attribute), 330
ndim (baseband.gsb.GSBPayload attribute), 336
ndim (baseband.gsb.payload.GSBPayload attribute), 350
ndim (baseband.guppi.base.GUPPIStreamReader at-

tribute), 316
ndim (baseband.guppi.frame.GUPPIFrame attribute),

301
ndim (baseband.guppi.GUPPIFrame attribute), 270
ndim (baseband.guppi.GUPPIPayload attribute), 284
ndim (baseband.guppi.payload.GUPPIPayload at-

tribute), 298
ndim (baseband.mark4.base.Mark4StreamReader at-

tribute), 215
ndim (baseband.mark4.frame.Mark4Frame attribute),

197
ndim (baseband.mark4.Mark4Frame attribute), 173
ndim (baseband.mark4.Mark4Payload attribute), 181
ndim (baseband.mark4.payload.Mark4Payload at-

tribute), 195
ndim (baseband.mark5b.base.Mark5BStreamReader at-

tribute), 161
ndim (baseband.mark5b.frame.Mark5BFrame attribute),

147
ndim (baseband.mark5b.Mark5BFrame attribute), 128
ndim (baseband.mark5b.Mark5BPayload attribute), 135
ndim (baseband.mark5b.payload.Mark5BPayload at-

tribute), 144
ndim (baseband.vdif.base.VDIFStreamReader attribute),

117
ndim (baseband.vdif.frame.VDIFFrame attribute), 98
ndim (baseband.vdif.frame.VDIFFrameSet attribute), 101
ndim (baseband.vdif.payload.VDIFPayload attribute), 95
ndim (baseband.vdif.VDIFFrame attribute), 37
ndim (baseband.vdif.VDIFFrameSet attribute), 39
ndim (baseband.vdif.VDIFPayload attribute), 46
ndim (baseband.vlbi_base.base.VLBIStreamReaderBase

attribute), 407
ndim (baseband.vlbi_base.frame.VLBIFrameBase at-

tribute), 396
ndim (baseband.vlbi_base.payload.VLBIPayloadBase at-

tribute), 393
npol (baseband.guppi.GUPPIHeader attribute), 275
npol (baseband.guppi.header.GUPPIHeader attribute),

288
nsb (baseband.mark4.header.Mark4Header attribute),

188
nsb (baseband.mark4.Mark4Header attribute), 176
ntrack (baseband.mark4.file_info.Mark4FileReaderInfo

attribute), 202
ntrack (baseband.mark4.header.Mark4Header at-

tribute), 188
ntrack (baseband.mark4.Mark4Header attribute), 176
number_of_frames (base-

band.guppi.file_info.GUPPIFileReaderInfo
attribute), 304

number_of_frames (base-
band.mark4.file_info.Mark4FileReaderInfo
attribute), 202

number_of_frames (base-
band.mark5b.file_info.Mark5BFileReaderInfo
attribute), 150

number_of_frames (base-
band.vdif.file_info.VDIFFileReaderInfo at-
tribute), 104

number_of_frames (base-
band.vlbi_base.file_info.VLBIFileReaderInfo
attribute), 417

number_of_framesets (base-
band.vdif.file_info.VDIFFileReaderInfo at-
tribute), 104

O
offset (baseband.dada.DADAHeader attribute), 232
offset (baseband.dada.header.DADAHeader attribute),

238
offset (baseband.guppi.GUPPIHeader attribute), 275

Index 487



baseband Documentation, Release 3.1.0

offset (baseband.guppi.header.GUPPIHeader at-
tribute), 288

offset0 (baseband.mark4.file_info.Mark4FileReaderInfo
attribute), 202

open() (in module baseband), 466
open() (in module baseband.dada), 225
open() (in module baseband.dada.base), 246
open() (in module baseband.gsb), 327
open() (in module baseband.gsb.base), 355
open() (in module baseband.guppi), 267
open() (in module baseband.guppi.base), 305
open() (in module baseband.helpers.sequentialfile), 376
open() (in module baseband.mark4), 170
open() (in module baseband.mark4.base), 203
open() (in module baseband.mark5b), 125
open() (in module baseband.mark5b.base), 152
open() (in module baseband.vdif ), 34
open() (in module baseband.vdif.base), 105
OPTIMAL_2BIT_HIGH (in module base-

band.vlbi_base.encoding), 422
overlap (baseband.guppi.GUPPIHeader attribute), 275
overlap (baseband.guppi.header.GUPPIHeader at-

tribute), 288

P
parse_string() (baseband.gsb.header.TimeGSB

method), 339
ParserDict (class in baseband.vlbi_base.header), 386
parsers (baseband.vlbi_base.header.HeaderParser at-

tribute), 387
payload, 25
payload_nbytes (baseband.dada.DADAHeader at-

tribute), 232
payload_nbytes (baseband.dada.header.DADAHeader

attribute), 238
payload_nbytes (baseband.guppi.GUPPIHeader

attribute), 275
payload_nbytes (base-

band.guppi.header.GUPPIHeader attribute),
289

payload_nbytes (base-
band.mark4.header.Mark4Header attribute),
188

payload_nbytes (baseband.mark4.Mark4Header
attribute), 176

payload_nbytes (base-
band.mark5b.header.Mark5BHeader attribute),
138

payload_nbytes (baseband.mark5b.Mark5BHeader at-
tribute), 131

payload_nbytes (base-
band.vdif.header.VDIFBaseHeader attribute),
55

payload_nbytes (baseband.vdif.header.VDIFHeader at-
tribute), 50

payload_nbytes (baseband.vdif.header.VDIFHeader0
attribute), 69

payload_nbytes (baseband.vdif.header.VDIFHeader1
attribute), 73

payload_nbytes (baseband.vdif.header.VDIFHeader2
attribute), 78

payload_nbytes (baseband.vdif.header.VDIFHeader3
attribute), 83

payload_nbytes (base-
band.vdif.header.VDIFLegacyHeader at-
tribute), 64

payload_nbytes (base-
band.vdif.header.VDIFMark5BHeader at-
tribute), 88

payload_nbytes (base-
band.vdif.header.VDIFSampleRateHeader
attribute), 59

payload_nbytes (baseband.vdif.VDIFHeader attribute),
42

pc_time (baseband.gsb.header.GSBPhasedHeader at-
tribute), 346

pop() (baseband.dada.DADAHeader method), 233
pop() (baseband.dada.header.DADAHeader method),

240
pop() (baseband.guppi.GUPPIHeader method), 280
pop() (baseband.guppi.header.GUPPIHeader method),

294
pop() (baseband.vlbi_base.header.HeaderParser

method), 388
popitem() (baseband.dada.DADAHeader method), 233
popitem() (baseband.dada.header.DADAHeader

method), 240
popitem() (baseband.guppi.GUPPIHeader method),

280
popitem() (baseband.guppi.header.GUPPIHeader

method), 294
popitem() (baseband.vlbi_base.header.HeaderParser

method), 388

R
read() (baseband.dada.base.DADAStreamReader

method), 260
read() (baseband.gsb.base.GSBStreamReader method),

365
read() (baseband.guppi.base.GUPPIStreamReader

method), 317
read() (baseband.helpers.sequentialfile.SequentialFileReader

method), 379
read() (baseband.mark4.base.Mark4StreamReader

method), 216
read() (baseband.mark5b.base.Mark5BStreamReader

method), 162

488 Index



baseband Documentation, Release 3.1.0

read() (baseband.vdif.base.VDIFStreamReader
method), 118

read() (baseband.vlbi_base.base.VLBIStreamReaderBase
method), 408

read_frame() (baseband.dada.base.DADAFileReader
method), 253

read_frame() (baseband.guppi.base.GUPPIFileReader
method), 310

read_frame() (baseband.mark4.base.Mark4FileReader
method), 210

read_frame() (baseband.mark5b.base.Mark5BFileReader
method), 155

read_frame() (baseband.vdif.base.VDIFFileReader
method), 110

read_frameset() (baseband.vdif.base.VDIFFileReader
method), 110

read_header() (baseband.dada.base.DADAFileReader
method), 253

read_header() (baseband.guppi.base.GUPPIFileReader
method), 310

read_header() (baseband.mark4.base.Mark4FileReader
method), 210

read_header() (baseband.mark5b.base.Mark5BFileReader
method), 156

read_header() (baseband.vdif.base.VDIFFileReader
method), 111

read_payload() (baseband.gsb.base.GSBFileReader
method), 359

read_timestamp() (base-
band.gsb.base.GSBTimeStampIO method),
357

readable (baseband.guppi.file_info.GUPPIFileReaderInfo
attribute), 304

readable (baseband.mark4.file_info.Mark4FileReaderInfo
attribute), 202

readable (baseband.mark5b.file_info.Mark5BFileReaderInfo
attribute), 150

readable (baseband.vdif.file_info.VDIFFileReaderInfo
attribute), 104

readable (baseband.vlbi_base.file_info.VLBIFileReaderInfo
attribute), 417

readable (baseband.vlbi_base.file_info.VLBIStreamReaderInfo
attribute), 419

readable() (baseband.dada.base.DADAStreamReader
method), 260

readable() (baseband.gsb.base.GSBStreamReader
method), 365

readable() (baseband.guppi.base.GUPPIStreamReader
method), 317

readable() (baseband.mark4.base.Mark4StreamReader
method), 217

readable() (baseband.mark5b.base.Mark5BStreamReader
method), 162

readable() (baseband.vdif.base.VDIFStreamReader

method), 118
readable() (baseband.vlbi_base.base.VLBIStreamReaderBase

method), 408
ref_time (baseband.mark4.file_info.Mark4FileReaderInfo

attribute), 202
ref_time (baseband.mark5b.file_info.Mark5BFileReaderInfo

attribute), 150
remove() (baseband.guppi.GUPPIHeader method), 280
remove() (baseband.guppi.header.GUPPIHeader

method), 294
rename_keyword() (baseband.guppi.GUPPIHeader

method), 280
rename_keyword() (base-

band.guppi.header.GUPPIHeader method),
294

reorder32() (in module baseband.mark4.payload), 193
reorder64() (in module baseband.mark4.payload), 193

S
same_stream() (baseband.vdif.header.VDIFBaseHeader

method), 57
same_stream() (baseband.vdif.header.VDIFHeader

method), 53
same_stream() (baseband.vdif.header.VDIFHeader0

method), 71
same_stream() (baseband.vdif.header.VDIFHeader1

method), 76
same_stream() (baseband.vdif.header.VDIFHeader2

method), 81
same_stream() (baseband.vdif.header.VDIFHeader3

method), 86
same_stream() (baseband.vdif.header.VDIFLegacyHeader

method), 67
same_stream() (baseband.vdif.header.VDIFMark5BHeader

method), 91
same_stream() (baseband.vdif.header.VDIFSampleRateHeader

method), 62
same_stream() (baseband.vdif.VDIFHeader method),

45
sample, 25
sample rate, 25
sample shape, 25
SAMPLE_AROCHIME_VDIF (in module baseband.data), 429
SAMPLE_BPS1_VDIF (in module baseband.data), 430
SAMPLE_DADA (in module baseband.data), 430
SAMPLE_DRAO_CORRUPT (in module baseband.data), 430
SAMPLE_GSB_PHASED (in module baseband.data), 430
SAMPLE_GSB_PHASED_HEADER (in module base-

band.data), 430
SAMPLE_GSB_RAWDUMP (in module baseband.data), 430
SAMPLE_GSB_RAWDUMP_HEADER (in module base-

band.data), 430
SAMPLE_MARK4 (in module baseband.data), 431
SAMPLE_MARK4_16TRACK (in module baseband.data), 431

Index 489



baseband Documentation, Release 3.1.0

SAMPLE_MARK4_32TRACK (in module baseband.data), 431
SAMPLE_MARK4_32TRACK_FANOUT2 (in module base-

band.data), 431
SAMPLE_MARK5B (in module baseband.data), 431
SAMPLE_MWA_VDIF (in module baseband.data), 431
SAMPLE_PUPPI (in module baseband.data), 432
sample_rate (baseband.dada.base.DADAStreamBase

attribute), 256
sample_rate (baseband.dada.base.DADAStreamReader

attribute), 259
sample_rate (baseband.dada.base.DADAStreamWriter

attribute), 262
sample_rate (baseband.dada.DADAHeader attribute),

232
sample_rate (baseband.dada.header.DADAHeader at-

tribute), 238
sample_rate (baseband.gsb.base.GSBStreamBase at-

tribute), 361
sample_rate (baseband.gsb.base.GSBStreamReader at-

tribute), 364
sample_rate (baseband.gsb.base.GSBStreamWriter at-

tribute), 368
sample_rate (baseband.guppi.base.GUPPIStreamBase

attribute), 312
sample_rate (baseband.guppi.base.GUPPIStreamReader

attribute), 316
sample_rate (baseband.guppi.base.GUPPIStreamWriter

attribute), 319
sample_rate (baseband.guppi.file_info.GUPPIFileReaderInfo

attribute), 304
sample_rate (baseband.guppi.GUPPIHeader attribute),

275
sample_rate (baseband.guppi.header.GUPPIHeader at-

tribute), 289
sample_rate (baseband.mark4.base.Mark4StreamBase

attribute), 212
sample_rate (baseband.mark4.base.Mark4StreamReader

attribute), 216
sample_rate (baseband.mark4.base.Mark4StreamWriter

attribute), 219
sample_rate (baseband.mark4.file_info.Mark4FileReaderInfo

attribute), 202
sample_rate (baseband.mark5b.base.Mark5BStreamBase

attribute), 158
sample_rate (baseband.mark5b.base.Mark5BStreamReader

attribute), 161
sample_rate (baseband.mark5b.base.Mark5BStreamWriter

attribute), 165
sample_rate (baseband.mark5b.file_info.Mark5BFileReaderInfo

attribute), 150
sample_rate (baseband.vdif.base.VDIFStreamBase at-

tribute), 113
sample_rate (baseband.vdif.base.VDIFStreamReader

attribute), 117

sample_rate (baseband.vdif.base.VDIFStreamWriter at-
tribute), 120

sample_rate (baseband.vdif.file_info.VDIFFileReaderInfo
attribute), 104

sample_rate (baseband.vdif.header.VDIFHeader1 at-
tribute), 73

sample_rate (baseband.vdif.header.VDIFHeader3 at-
tribute), 83

sample_rate (baseband.vdif.header.VDIFSampleRateHeader
attribute), 59

sample_rate (baseband.vlbi_base.base.VLBIStreamBase
attribute), 404

sample_rate (baseband.vlbi_base.base.VLBIStreamReaderBase
attribute), 407

sample_rate (baseband.vlbi_base.base.VLBIStreamWriterBase
attribute), 410

sample_rate (baseband.vlbi_base.file_info.VLBIFileReaderInfo
attribute), 417

sample_rate (baseband.vlbi_base.file_info.VLBIStreamReaderInfo
attribute), 419

sample_shape (baseband.dada.base.DADAStreamBase
attribute), 256

sample_shape (baseband.dada.base.DADAStreamReader
attribute), 259

sample_shape (baseband.dada.base.DADAStreamWriter
attribute), 262

sample_shape (baseband.dada.DADAFrame attribute),
229

sample_shape (baseband.dada.DADAHeader attribute),
232

sample_shape (baseband.dada.frame.DADAFrame at-
tribute), 245

sample_shape (baseband.dada.header.DADAHeader at-
tribute), 238

sample_shape (baseband.gsb.base.GSBStreamBase at-
tribute), 361

sample_shape (baseband.gsb.base.GSBStreamReader
attribute), 364

sample_shape (baseband.gsb.base.GSBStreamWriter at-
tribute), 368

sample_shape (baseband.gsb.frame.GSBFrame at-
tribute), 353

sample_shape (baseband.gsb.GSBFrame attribute), 330
sample_shape (baseband.guppi.base.GUPPIStreamBase

attribute), 312
sample_shape (baseband.guppi.base.GUPPIStreamReader

attribute), 316
sample_shape (baseband.guppi.base.GUPPIStreamWriter

attribute), 319
sample_shape (baseband.guppi.file_info.GUPPIFileReaderInfo

attribute), 304
sample_shape (baseband.guppi.frame.GUPPIFrame at-

tribute), 301
sample_shape (baseband.guppi.GUPPIFrame attribute),

490 Index



baseband Documentation, Release 3.1.0

270
sample_shape (baseband.guppi.GUPPIHeader at-

tribute), 275
sample_shape (baseband.guppi.header.GUPPIHeader

attribute), 289
sample_shape (baseband.mark4.base.Mark4StreamBase

attribute), 212
sample_shape (baseband.mark4.base.Mark4StreamReader

attribute), 216
sample_shape (baseband.mark4.base.Mark4StreamWriter

attribute), 219
sample_shape (baseband.mark4.file_info.Mark4FileReaderInfo

attribute), 202
sample_shape (baseband.mark4.frame.Mark4Frame at-

tribute), 197
sample_shape (baseband.mark4.Mark4Frame attribute),

173
sample_shape (baseband.mark5b.base.Mark5BStreamBase

attribute), 158
sample_shape (baseband.mark5b.base.Mark5BStreamReader

attribute), 161
sample_shape (baseband.mark5b.base.Mark5BStreamWriter

attribute), 165
sample_shape (baseband.mark5b.file_info.Mark5BFileReaderInfo

attribute), 151
sample_shape (baseband.mark5b.frame.Mark5BFrame

attribute), 147
sample_shape (baseband.mark5b.Mark5BFrame at-

tribute), 128
sample_shape (baseband.vdif.base.VDIFStreamBase at-

tribute), 113
sample_shape (baseband.vdif.base.VDIFStreamReader

attribute), 117
sample_shape (baseband.vdif.base.VDIFStreamWriter

attribute), 120
sample_shape (baseband.vdif.file_info.VDIFFileReaderInfo

attribute), 104
sample_shape (baseband.vdif.frame.VDIFFrame at-

tribute), 98
sample_shape (baseband.vdif.frame.VDIFFrameSet at-

tribute), 101
sample_shape (baseband.vdif.VDIFFrame attribute), 37
sample_shape (baseband.vdif.VDIFFrameSet attribute),

39
sample_shape (baseband.vlbi_base.base.VLBIStreamBase

attribute), 404
sample_shape (baseband.vlbi_base.base.VLBIStreamReaderBase

attribute), 407
sample_shape (baseband.vlbi_base.base.VLBIStreamWriterBase

attribute), 410
sample_shape (baseband.vlbi_base.file_info.VLBIFileReaderInfo

attribute), 417
sample_shape (baseband.vlbi_base.frame.VLBIFrameBase

attribute), 396

SAMPLE_VDIF (in module baseband.data), 432
SAMPLE_VLBI_VDIF (in module baseband.data), 432
samples_per_frame (base-

band.dada.base.DADAStreamBase attribute),
256

samples_per_frame (base-
band.dada.base.DADAStreamReader at-
tribute), 259

samples_per_frame (base-
band.dada.base.DADAStreamWriter attribute),
262

samples_per_frame (baseband.dada.DADAHeader at-
tribute), 232

samples_per_frame (base-
band.dada.header.DADAHeader attribute),
238

samples_per_frame (base-
band.gsb.base.GSBStreamBase attribute),
361

samples_per_frame (base-
band.gsb.base.GSBStreamReader attribute),
364

samples_per_frame (base-
band.gsb.base.GSBStreamWriter attribute),
368

samples_per_frame (base-
band.guppi.base.GUPPIStreamBase attribute),
312

samples_per_frame (base-
band.guppi.base.GUPPIStreamReader at-
tribute), 316

samples_per_frame (base-
band.guppi.base.GUPPIStreamWriter at-
tribute), 319

samples_per_frame (base-
band.guppi.file_info.GUPPIFileReaderInfo
attribute), 304

samples_per_frame (baseband.guppi.GUPPIHeader at-
tribute), 275

samples_per_frame (base-
band.guppi.header.GUPPIHeader attribute),
289

samples_per_frame (base-
band.mark4.base.Mark4StreamBase attribute),
212

samples_per_frame (base-
band.mark4.base.Mark4StreamReader at-
tribute), 216

samples_per_frame (base-
band.mark4.base.Mark4StreamWriter at-
tribute), 219

samples_per_frame (base-
band.mark4.file_info.Mark4FileReaderInfo
attribute), 202

Index 491



baseband Documentation, Release 3.1.0

samples_per_frame (base-
band.mark4.header.Mark4Header attribute),
188

samples_per_frame (baseband.mark4.Mark4Header at-
tribute), 176

samples_per_frame (base-
band.mark5b.base.Mark5BStreamBase at-
tribute), 158

samples_per_frame (base-
band.mark5b.base.Mark5BStreamReader
attribute), 161

samples_per_frame (base-
band.mark5b.base.Mark5BStreamWriter
attribute), 165

samples_per_frame (base-
band.mark5b.file_info.Mark5BFileReaderInfo
attribute), 151

samples_per_frame (base-
band.vdif.base.VDIFStreamBase attribute),
113

samples_per_frame (base-
band.vdif.base.VDIFStreamReader attribute),
117

samples_per_frame (base-
band.vdif.base.VDIFStreamWriter attribute),
120

samples_per_frame (base-
band.vdif.file_info.VDIFFileReaderInfo at-
tribute), 104

samples_per_frame (base-
band.vdif.header.VDIFBaseHeader attribute),
55

samples_per_frame (base-
band.vdif.header.VDIFHeader attribute),
50

samples_per_frame (base-
band.vdif.header.VDIFHeader0 attribute),
69

samples_per_frame (base-
band.vdif.header.VDIFHeader1 attribute),
74

samples_per_frame (base-
band.vdif.header.VDIFHeader2 attribute),
78

samples_per_frame (base-
band.vdif.header.VDIFHeader3 attribute),
83

samples_per_frame (base-
band.vdif.header.VDIFLegacyHeader at-
tribute), 64

samples_per_frame (base-
band.vdif.header.VDIFMark5BHeader at-
tribute), 88

samples_per_frame (base-

band.vdif.header.VDIFSampleRateHeader
attribute), 60

samples_per_frame (baseband.vdif.VDIFHeader
attribute), 42

samples_per_frame (base-
band.vlbi_base.base.VLBIStreamBase at-
tribute), 404

samples_per_frame (base-
band.vlbi_base.base.VLBIStreamReaderBase
attribute), 407

samples_per_frame (base-
band.vlbi_base.base.VLBIStreamWriterBase
attribute), 410

samples_per_frame (base-
band.vlbi_base.file_info.VLBIFileReaderInfo
attribute), 417

scale (baseband.gsb.header.TimeGSB attribute), 338
seconds (baseband.mark5b.header.Mark5BHeader at-

tribute), 138
seconds (baseband.mark5b.Mark5BHeader attribute),

131
seconds (baseband.vdif.header.VDIFMark5BHeader at-

tribute), 88
seek() (baseband.dada.base.DADAStreamReader

method), 260
seek() (baseband.gsb.base.GSBStreamReader method),

365
seek() (baseband.guppi.base.GUPPIStreamReader

method), 317
seek() (baseband.helpers.sequentialfile.SequentialFileReader

method), 379
seek() (baseband.mark4.base.Mark4StreamReader

method), 217
seek() (baseband.mark5b.base.Mark5BStreamReader

method), 162
seek() (baseband.vdif.base.VDIFStreamReader

method), 118
seek() (baseband.vlbi_base.base.VLBIStreamReaderBase

method), 408
seek_offset() (baseband.gsb.GSBHeader method), 334
seek_offset() (baseband.gsb.header.GSBHeader

method), 341
seek_offset() (baseband.gsb.header.GSBPhasedHeader

method), 347
seek_offset() (baseband.gsb.header.GSBRawdumpHeader

method), 344
SequentialFileBase (class in base-

band.helpers.sequentialfile), 378
SequentialFileReader (class in base-

band.helpers.sequentialfile), 378
SequentialFileWriter (class in base-

band.helpers.sequentialfile), 380
set() (baseband.guppi.GUPPIHeader method), 281
set() (baseband.guppi.header.GUPPIHeader method),

492 Index



baseband Documentation, Release 3.1.0

294
set_jds() (baseband.gsb.header.TimeGSB method), 339
set_time() (baseband.mark4.header.Mark4Header

method), 191
set_time() (baseband.mark4.header.Mark4TrackHeader

method), 186
set_time() (baseband.mark4.Mark4Header method),

179
set_time() (baseband.mark5b.header.Mark5BHeader

method), 140
set_time() (baseband.mark5b.Mark5BHeader method),

133
set_time() (baseband.vdif.header.VDIFBaseHeader

method), 57
set_time() (baseband.vdif.header.VDIFHeader

method), 53
set_time() (baseband.vdif.header.VDIFHeader0

method), 71
set_time() (baseband.vdif.header.VDIFHeader1

method), 76
set_time() (baseband.vdif.header.VDIFHeader2

method), 81
set_time() (baseband.vdif.header.VDIFHeader3

method), 86
set_time() (baseband.vdif.header.VDIFLegacyHeader

method), 67
set_time() (baseband.vdif.header.VDIFMark5BHeader

method), 91
set_time() (baseband.vdif.header.VDIFSampleRateHeader

method), 62
set_time() (baseband.vdif.VDIFHeader method), 45
setdefault() (baseband.dada.DADAHeader method),

233
setdefault() (baseband.dada.header.DADAHeader

method), 240
setdefault() (baseband.guppi.GUPPIHeader method),

281
setdefault() (baseband.guppi.header.GUPPIHeader

method), 295
setdefault() (baseband.vlbi_base.header.HeaderParser

method), 388
setter() (baseband.vlbi_base.header.fixedvalue

method), 386
setters (baseband.vlbi_base.header.HeaderParser at-

tribute), 387
shape (baseband.dada.base.DADAStreamReader at-

tribute), 259
shape (baseband.dada.DADAFrame attribute), 229
shape (baseband.dada.DADAPayload attribute), 235
shape (baseband.dada.frame.DADAFrame attribute),

245
shape (baseband.dada.payload.DADAPayload attribute),

242
shape (baseband.gsb.base.GSBStreamReader attribute),

364
shape (baseband.gsb.frame.GSBFrame attribute), 353
shape (baseband.gsb.GSBFrame attribute), 330
shape (baseband.gsb.GSBPayload attribute), 336
shape (baseband.gsb.payload.GSBPayload attribute),

350
shape (baseband.guppi.base.GUPPIStreamReader at-

tribute), 316
shape (baseband.guppi.frame.GUPPIFrame attribute),

301
shape (baseband.guppi.GUPPIFrame attribute), 270
shape (baseband.guppi.GUPPIPayload attribute), 284
shape (baseband.guppi.payload.GUPPIPayload at-

tribute), 298
shape (baseband.mark4.base.Mark4StreamReader at-

tribute), 216
shape (baseband.mark4.frame.Mark4Frame attribute),

197
shape (baseband.mark4.Mark4Frame attribute), 173
shape (baseband.mark4.Mark4Payload attribute), 181
shape (baseband.mark4.payload.Mark4Payload at-

tribute), 195
shape (baseband.mark5b.base.Mark5BStreamReader at-

tribute), 161
shape (baseband.mark5b.frame.Mark5BFrame at-

tribute), 147
shape (baseband.mark5b.Mark5BFrame attribute), 128
shape (baseband.mark5b.Mark5BPayload attribute), 135
shape (baseband.mark5b.payload.Mark5BPayload at-

tribute), 145
shape (baseband.vdif.base.VDIFStreamReader at-

tribute), 117
shape (baseband.vdif.frame.VDIFFrame attribute), 98
shape (baseband.vdif.frame.VDIFFrameSet attribute),

101
shape (baseband.vdif.payload.VDIFPayload attribute),

95
shape (baseband.vdif.VDIFFrame attribute), 37
shape (baseband.vdif.VDIFFrameSet attribute), 39
shape (baseband.vdif.VDIFPayload attribute), 47
shape (baseband.vlbi_base.base.VLBIStreamReaderBase

attribute), 407
shape (baseband.vlbi_base.file_info.VLBIStreamReaderInfo

attribute), 419
shape (baseband.vlbi_base.frame.VLBIFrameBase at-

tribute), 396
shape (baseband.vlbi_base.payload.VLBIPayloadBase

attribute), 393
sideband (baseband.dada.DADAHeader attribute), 232
sideband (baseband.dada.header.DADAHeader at-

tribute), 239
sideband (baseband.guppi.GUPPIHeader attribute),

275
sideband (baseband.guppi.header.GUPPIHeader

Index 493



baseband Documentation, Release 3.1.0

attribute), 289
size (baseband.dada.base.DADAStreamReader at-

tribute), 259
size (baseband.dada.DADAFrame attribute), 229
size (baseband.dada.DADAPayload attribute), 235
size (baseband.dada.frame.DADAFrame attribute), 245
size (baseband.dada.payload.DADAPayload attribute),

242
size (baseband.gsb.base.GSBStreamReader attribute),

364
size (baseband.gsb.frame.GSBFrame attribute), 353
size (baseband.gsb.GSBFrame attribute), 330
size (baseband.gsb.GSBPayload attribute), 336
size (baseband.gsb.payload.GSBPayload attribute), 350
size (baseband.guppi.base.GUPPIStreamReader at-

tribute), 316
size (baseband.guppi.frame.GUPPIFrame attribute),

301
size (baseband.guppi.GUPPIFrame attribute), 270
size (baseband.guppi.GUPPIPayload attribute), 284
size (baseband.guppi.payload.GUPPIPayload at-

tribute), 298
size (baseband.helpers.sequentialfile.SequentialFileReader

attribute), 379
size (baseband.mark4.base.Mark4StreamReader at-

tribute), 216
size (baseband.mark4.frame.Mark4Frame attribute),

197
size (baseband.mark4.Mark4Frame attribute), 173
size (baseband.mark4.Mark4Payload attribute), 181
size (baseband.mark4.payload.Mark4Payload at-

tribute), 195
size (baseband.mark5b.base.Mark5BStreamReader at-

tribute), 161
size (baseband.mark5b.frame.Mark5BFrame attribute),

147
size (baseband.mark5b.Mark5BFrame attribute), 128
size (baseband.mark5b.Mark5BPayload attribute), 135
size (baseband.mark5b.payload.Mark5BPayload at-

tribute), 145
size (baseband.vdif.base.VDIFStreamReader attribute),

117
size (baseband.vdif.frame.VDIFFrame attribute), 98
size (baseband.vdif.frame.VDIFFrameSet attribute), 101
size (baseband.vdif.payload.VDIFPayload attribute), 95
size (baseband.vdif.VDIFFrame attribute), 37
size (baseband.vdif.VDIFFrameSet attribute), 39
size (baseband.vdif.VDIFPayload attribute), 47
size (baseband.vlbi_base.base.VLBIStreamReaderBase

attribute), 407
size (baseband.vlbi_base.frame.VLBIFrameBase at-

tribute), 396
size (baseband.vlbi_base.payload.VLBIPayloadBase at-

tribute), 393

squeeze (baseband.dada.base.DADAStreamBase at-
tribute), 256

squeeze (baseband.dada.base.DADAStreamReader at-
tribute), 259

squeeze (baseband.dada.base.DADAStreamWriter at-
tribute), 262

squeeze (baseband.gsb.base.GSBStreamBase attribute),
361

squeeze (baseband.gsb.base.GSBStreamReader at-
tribute), 364

squeeze (baseband.gsb.base.GSBStreamWriter at-
tribute), 368

squeeze (baseband.guppi.base.GUPPIStreamBase at-
tribute), 313

squeeze (baseband.guppi.base.GUPPIStreamReader at-
tribute), 316

squeeze (baseband.guppi.base.GUPPIStreamWriter at-
tribute), 319

squeeze (baseband.mark4.base.Mark4StreamBase at-
tribute), 212

squeeze (baseband.mark4.base.Mark4StreamReader at-
tribute), 216

squeeze (baseband.mark4.base.Mark4StreamWriter at-
tribute), 219

squeeze (baseband.mark5b.base.Mark5BStreamBase at-
tribute), 158

squeeze (baseband.mark5b.base.Mark5BStreamReader
attribute), 162

squeeze (baseband.mark5b.base.Mark5BStreamWriter
attribute), 165

squeeze (baseband.vdif.base.VDIFStreamBase at-
tribute), 113

squeeze (baseband.vdif.base.VDIFStreamReader at-
tribute), 117

squeeze (baseband.vdif.base.VDIFStreamWriter at-
tribute), 120

squeeze (baseband.vlbi_base.base.VLBIStreamBase at-
tribute), 404

squeeze (baseband.vlbi_base.base.VLBIStreamReaderBase
attribute), 407

squeeze (baseband.vlbi_base.base.VLBIStreamWriterBase
attribute), 410

squeezing, 25
start_time (baseband.dada.base.DADAStreamBase at-

tribute), 256
start_time (baseband.dada.base.DADAStreamReader

attribute), 259
start_time (baseband.dada.base.DADAStreamWriter

attribute), 262
start_time (baseband.dada.DADAHeader attribute),

232
start_time (baseband.dada.header.DADAHeader at-

tribute), 239
start_time (baseband.gsb.base.GSBStreamBase at-

494 Index



baseband Documentation, Release 3.1.0

tribute), 361
start_time (baseband.gsb.base.GSBStreamReader at-

tribute), 364
start_time (baseband.gsb.base.GSBStreamWriter at-

tribute), 368
start_time (baseband.guppi.base.GUPPIStreamBase

attribute), 313
start_time (baseband.guppi.base.GUPPIStreamReader

attribute), 316
start_time (baseband.guppi.base.GUPPIStreamWriter

attribute), 319
start_time (baseband.guppi.file_info.GUPPIFileReaderInfo

attribute), 304
start_time (baseband.guppi.GUPPIHeader attribute),

275
start_time (baseband.guppi.header.GUPPIHeader at-

tribute), 289
start_time (baseband.mark4.base.Mark4StreamBase

attribute), 212
start_time (baseband.mark4.base.Mark4StreamReader

attribute), 216
start_time (baseband.mark4.base.Mark4StreamWriter

attribute), 219
start_time (baseband.mark4.file_info.Mark4FileReaderInfo

attribute), 202
start_time (baseband.mark5b.base.Mark5BStreamBase

attribute), 158
start_time (baseband.mark5b.base.Mark5BStreamReader

attribute), 162
start_time (baseband.mark5b.base.Mark5BStreamWriter

attribute), 165
start_time (baseband.mark5b.file_info.Mark5BFileReaderInfo

attribute), 151
start_time (baseband.vdif.base.VDIFStreamBase at-

tribute), 114
start_time (baseband.vdif.base.VDIFStreamReader at-

tribute), 117
start_time (baseband.vdif.base.VDIFStreamWriter at-

tribute), 121
start_time (baseband.vdif.file_info.VDIFFileReaderInfo

attribute), 104
start_time (baseband.vlbi_base.base.VLBIStreamBase

attribute), 404
start_time (baseband.vlbi_base.base.VLBIStreamReaderBase

attribute), 407
start_time (baseband.vlbi_base.base.VLBIStreamWriterBase

attribute), 410
start_time (baseband.vlbi_base.file_info.VLBIFileReaderInfo

attribute), 417
start_time (baseband.vlbi_base.file_info.VLBIStreamReaderInfo

attribute), 419
station (baseband.vdif.header.VDIFBaseHeader at-

tribute), 55
station (baseband.vdif.header.VDIFHeader attribute),

50
station (baseband.vdif.header.VDIFHeader0 attribute),

69
station (baseband.vdif.header.VDIFHeader1 attribute),

74
station (baseband.vdif.header.VDIFHeader2 attribute),

78
station (baseband.vdif.header.VDIFHeader3 attribute),

83
station (baseband.vdif.header.VDIFLegacyHeader at-

tribute), 64
station (baseband.vdif.header.VDIFMark5BHeader at-

tribute), 88
station (baseband.vdif.header.VDIFSampleRateHeader

attribute), 60
station (baseband.vdif.VDIFHeader attribute), 42
stop_time (baseband.dada.base.DADAStreamReader

attribute), 259
stop_time (baseband.gsb.base.GSBStreamReader at-

tribute), 364
stop_time (baseband.guppi.base.GUPPIStreamReader

attribute), 316
stop_time (baseband.mark4.base.Mark4StreamReader

attribute), 216
stop_time (baseband.mark5b.base.Mark5BStreamReader

attribute), 162
stop_time (baseband.vdif.base.VDIFStreamReader at-

tribute), 117
stop_time (baseband.vlbi_base.base.VLBIStreamReaderBase

attribute), 407
stop_time (baseband.vlbi_base.file_info.VLBIStreamReaderInfo

attribute), 419
str_kwargs() (baseband.gsb.header.TimeGSB method),

339
stream, 25
stream2words() (in module baseband.mark4.header),

182
stream_dtype (baseband.mark4.header.Mark4Header

attribute), 189
stream_dtype (baseband.mark4.Mark4Header at-

tribute), 176
subset, 26
subset (baseband.dada.base.DADAStreamBase at-

tribute), 256
subset (baseband.dada.base.DADAStreamReader

attribute), 259
subset (baseband.dada.base.DADAStreamWriter at-

tribute), 262
subset (baseband.gsb.base.GSBStreamBase attribute),

361
subset (baseband.gsb.base.GSBStreamReader at-

tribute), 365
subset (baseband.gsb.base.GSBStreamWriter attribute),

368

Index 495



baseband Documentation, Release 3.1.0

subset (baseband.guppi.base.GUPPIStreamBase at-
tribute), 313

subset (baseband.guppi.base.GUPPIStreamReader at-
tribute), 316

subset (baseband.guppi.base.GUPPIStreamWriter at-
tribute), 319

subset (baseband.mark4.base.Mark4StreamBase at-
tribute), 212

subset (baseband.mark4.base.Mark4StreamReader at-
tribute), 216

subset (baseband.mark4.base.Mark4StreamWriter at-
tribute), 219

subset (baseband.mark5b.base.Mark5BStreamBase at-
tribute), 158

subset (baseband.mark5b.base.Mark5BStreamReader
attribute), 162

subset (baseband.mark5b.base.Mark5BStreamWriter at-
tribute), 165

subset (baseband.vdif.base.VDIFStreamBase attribute),
114

subset (baseband.vdif.base.VDIFStreamReader at-
tribute), 117

subset (baseband.vdif.base.VDIFStreamWriter at-
tribute), 121

subset (baseband.vlbi_base.base.VLBIStreamBase at-
tribute), 404

subset (baseband.vlbi_base.base.VLBIStreamReaderBase
attribute), 407

subset (baseband.vlbi_base.base.VLBIStreamWriterBase
attribute), 410

T
tell() (baseband.dada.base.DADAStreamBase

method), 256
tell() (baseband.dada.base.DADAStreamReader

method), 260
tell() (baseband.dada.base.DADAStreamWriter

method), 263
tell() (baseband.gsb.base.GSBStreamBase method),

362
tell() (baseband.gsb.base.GSBStreamReader method),

366
tell() (baseband.gsb.base.GSBStreamWriter method),

369
tell() (baseband.guppi.base.GUPPIStreamBase

method), 313
tell() (baseband.guppi.base.GUPPIStreamReader

method), 317
tell() (baseband.guppi.base.GUPPIStreamWriter

method), 320
tell() (baseband.helpers.sequentialfile.SequentialFileBase

method), 378
tell() (baseband.helpers.sequentialfile.SequentialFileReader

method), 380

tell() (baseband.helpers.sequentialfile.SequentialFileWriter
method), 381

tell() (baseband.mark4.base.Mark4StreamBase
method), 213

tell() (baseband.mark4.base.Mark4StreamReader
method), 217

tell() (baseband.mark4.base.Mark4StreamWriter
method), 220

tell() (baseband.mark5b.base.Mark5BStreamBase
method), 158

tell() (baseband.mark5b.base.Mark5BStreamReader
method), 163

tell() (baseband.mark5b.base.Mark5BStreamWriter
method), 165

tell() (baseband.vdif.base.VDIFStreamBase method),
114

tell() (baseband.vdif.base.VDIFStreamReader
method), 118

tell() (baseband.vdif.base.VDIFStreamWriter method),
121

tell() (baseband.vlbi_base.base.VLBIStreamBase
method), 405

tell() (baseband.vlbi_base.base.VLBIStreamReaderBase
method), 408

tell() (baseband.vlbi_base.base.VLBIStreamWriterBase
method), 410

temporary_offset() (base-
band.dada.base.DADAFileReader method),
253

temporary_offset() (base-
band.dada.base.DADAFileWriter method),
254

temporary_offset() (base-
band.gsb.base.GSBFileReader method),
359

temporary_offset() (base-
band.gsb.base.GSBFileWriter method), 360

temporary_offset() (base-
band.gsb.base.GSBTimeStampIO method),
358

temporary_offset() (base-
band.guppi.base.GUPPIFileReader method),
310

temporary_offset() (base-
band.guppi.base.GUPPIFileWriter method),
311

temporary_offset() (base-
band.mark4.base.Mark4FileReader method),
210

temporary_offset() (base-
band.mark4.base.Mark4FileWriter method),
211

temporary_offset() (base-
band.mark5b.base.Mark5BFileReader

496 Index



baseband Documentation, Release 3.1.0

method), 156
temporary_offset() (base-

band.mark5b.base.Mark5BFileWriter method),
156

temporary_offset() (base-
band.vdif.base.VDIFFileReader method),
111

temporary_offset() (base-
band.vdif.base.VDIFFileWriter method),
112

temporary_offset() (base-
band.vlbi_base.base.VLBIFileBase method),
399

temporary_offset() (base-
band.vlbi_base.base.VLBIFileReaderBase
method), 403

test() (in module baseband), 466
thread, 26
thread_ids (baseband.vdif.file_info.VDIFFileReaderInfo

attribute), 105
time (baseband.dada.base.DADAStreamBase attribute),

256
time (baseband.dada.base.DADAStreamReader at-

tribute), 260
time (baseband.dada.base.DADAStreamWriter at-

tribute), 262
time (baseband.dada.DADAHeader attribute), 232
time (baseband.dada.header.DADAHeader attribute),

239
time (baseband.gsb.base.GSBStreamBase attribute), 361
time (baseband.gsb.base.GSBStreamReader attribute),

365
time (baseband.gsb.base.GSBStreamWriter attribute),

368
time (baseband.gsb.header.GSBPhasedHeader at-

tribute), 346
time (baseband.gsb.header.GSBRawdumpHeader at-

tribute), 343
time (baseband.guppi.base.GUPPIStreamBase at-

tribute), 313
time (baseband.guppi.base.GUPPIStreamReader at-

tribute), 316
time (baseband.guppi.base.GUPPIStreamWriter at-

tribute), 319
time (baseband.guppi.GUPPIHeader attribute), 275
time (baseband.guppi.header.GUPPIHeader attribute),

289
time (baseband.mark4.base.Mark4StreamBase at-

tribute), 212
time (baseband.mark4.base.Mark4StreamReader at-

tribute), 216
time (baseband.mark4.base.Mark4StreamWriter at-

tribute), 219
time (baseband.mark4.header.Mark4Header attribute),

189
time (baseband.mark4.header.Mark4TrackHeader

attribute), 184
time (baseband.mark4.Mark4Header attribute), 176
time (baseband.mark5b.base.Mark5BStreamBase at-

tribute), 158
time (baseband.mark5b.base.Mark5BStreamReader at-

tribute), 162
time (baseband.mark5b.base.Mark5BStreamWriter at-

tribute), 165
time (baseband.mark5b.header.Mark5BHeader at-

tribute), 138
time (baseband.mark5b.Mark5BHeader attribute), 131
time (baseband.vdif.base.VDIFStreamBase attribute),

114
time (baseband.vdif.base.VDIFStreamReader attribute),

117
time (baseband.vdif.base.VDIFStreamWriter attribute),

121
time (baseband.vdif.header.VDIFBaseHeader attribute),

55
time (baseband.vdif.header.VDIFHeader attribute), 50
time (baseband.vdif.header.VDIFHeader0 attribute), 69
time (baseband.vdif.header.VDIFHeader1 attribute), 74
time (baseband.vdif.header.VDIFHeader2 attribute), 78
time (baseband.vdif.header.VDIFHeader3 attribute), 83
time (baseband.vdif.header.VDIFLegacyHeader at-

tribute), 64
time (baseband.vdif.header.VDIFMark5BHeader at-

tribute), 88
time (baseband.vdif.header.VDIFSampleRateHeader at-

tribute), 60
time (baseband.vdif.VDIFHeader attribute), 42
time (baseband.vlbi_base.base.VLBIStreamBase at-

tribute), 405
time (baseband.vlbi_base.base.VLBIStreamReaderBase

attribute), 408
time (baseband.vlbi_base.base.VLBIStreamWriterBase

attribute), 410
time_info (baseband.mark4.file_info.Mark4FileReaderInfo

attribute), 202
time_info (baseband.mark5b.file_info.Mark5BFileReaderInfo

attribute), 151
TimeGSB (class in baseband.gsb.header), 337
to_value() (baseband.gsb.header.TimeGSB method),

339
tofile() (baseband.dada.DADAFrame method), 230
tofile() (baseband.dada.DADAHeader method), 233
tofile() (baseband.dada.DADAPayload method), 236
tofile() (baseband.dada.frame.DADAFrame method),

246
tofile() (baseband.dada.header.DADAHeader

method), 240
tofile() (baseband.dada.payload.DADAPayload

Index 497



baseband Documentation, Release 3.1.0

method), 243
tofile() (baseband.gsb.frame.GSBFrame method), 354
tofile() (baseband.gsb.GSBFrame method), 331
tofile() (baseband.gsb.GSBHeader method), 334
tofile() (baseband.gsb.GSBPayload method), 336
tofile() (baseband.gsb.header.GSBHeader method),

342
tofile() (baseband.gsb.header.GSBPhasedHeader

method), 348
tofile() (baseband.gsb.header.GSBRawdumpHeader

method), 345
tofile() (baseband.gsb.payload.GSBPayload method),

350
tofile() (baseband.guppi.frame.GUPPIFrame

method), 302
tofile() (baseband.guppi.GUPPIFrame method), 271
tofile() (baseband.guppi.GUPPIHeader method), 281
tofile() (baseband.guppi.GUPPIPayload method), 285
tofile() (baseband.guppi.header.GUPPIHeader

method), 295
tofile() (baseband.guppi.payload.GUPPIPayload

method), 299
tofile() (baseband.mark4.frame.Mark4Frame method),

198
tofile() (baseband.mark4.header.Mark4Header

method), 191
tofile() (baseband.mark4.header.Mark4TrackHeader

method), 186
tofile() (baseband.mark4.Mark4Frame method), 174
tofile() (baseband.mark4.Mark4Header method), 179
tofile() (baseband.mark4.Mark4Payload method), 181
tofile() (baseband.mark4.payload.Mark4Payload

method), 195
tofile() (baseband.mark5b.frame.Mark5BFrame

method), 148
tofile() (baseband.mark5b.header.Mark5BHeader

method), 141
tofile() (baseband.mark5b.Mark5BFrame method),

129
tofile() (baseband.mark5b.Mark5BHeader method),

134
tofile() (baseband.mark5b.Mark5BPayload method),

135
tofile() (baseband.mark5b.payload.Mark5BPayload

method), 145
tofile() (baseband.vdif.frame.VDIFFrame method), 99
tofile() (baseband.vdif.frame.VDIFFrameSet method),

102
tofile() (baseband.vdif.header.VDIFBaseHeader

method), 58
tofile() (baseband.vdif.header.VDIFHeader method),

53
tofile() (baseband.vdif.header.VDIFHeader0 method),

72

tofile() (baseband.vdif.header.VDIFHeader1 method),
76

tofile() (baseband.vdif.header.VDIFHeader2 method),
81

tofile() (baseband.vdif.header.VDIFHeader3 method),
86

tofile() (baseband.vdif.header.VDIFLegacyHeader
method), 67

tofile() (baseband.vdif.header.VDIFMark5BHeader
method), 91

tofile() (baseband.vdif.header.VDIFSampleRateHeader
method), 62

tofile() (baseband.vdif.payload.VDIFPayload
method), 96

tofile() (baseband.vdif.VDIFFrame method), 38
tofile() (baseband.vdif.VDIFFrameSet method), 41
tofile() (baseband.vdif.VDIFHeader method), 45
tofile() (baseband.vdif.VDIFPayload method), 47
tofile() (baseband.vlbi_base.frame.VLBIFrameBase

method), 397
tofile() (baseband.vlbi_base.header.VLBIHeaderBase

method), 391
tofile() (baseband.vlbi_base.payload.VLBIPayloadBase

method), 394
tostring() (baseband.guppi.GUPPIHeader method),

281
tostring() (baseband.guppi.header.GUPPIHeader

method), 295
totextfile() (baseband.guppi.GUPPIHeader method),

282
totextfile() (baseband.guppi.header.GUPPIHeader

method), 296
track_assignment (base-

band.mark4.header.Mark4Header attribute),
189

track_assignment (baseband.mark4.Mark4Header at-
tribute), 177

track_id (baseband.mark4.header.Mark4Header at-
tribute), 189

track_id (baseband.mark4.header.Mark4TrackHeader
attribute), 184

track_id (baseband.mark4.Mark4Header attribute), 177
TWO_BIT_1_SIGMA (in module base-

band.vlbi_base.encoding), 423

U
update() (baseband.dada.DADAHeader method), 233
update() (baseband.dada.header.DADAHeader

method), 240
update() (baseband.gsb.GSBHeader method), 334
update() (baseband.gsb.header.GSBHeader method),

342
update() (baseband.gsb.header.GSBPhasedHeader

method), 348

498 Index



baseband Documentation, Release 3.1.0

update() (baseband.gsb.header.GSBRawdumpHeader
method), 345

update() (baseband.guppi.GUPPIHeader method), 282
update() (baseband.guppi.header.GUPPIHeader

method), 296
update() (baseband.mark4.header.Mark4Header

method), 191
update() (baseband.mark4.header.Mark4TrackHeader

method), 186
update() (baseband.mark4.Mark4Header method), 179
update() (baseband.mark5b.header.Mark5BHeader

method), 141
update() (baseband.mark5b.Mark5BHeader method),

134
update() (baseband.vdif.header.VDIFBaseHeader

method), 58
update() (baseband.vdif.header.VDIFHeader method),

53
update() (baseband.vdif.header.VDIFHeader0 method),

72
update() (baseband.vdif.header.VDIFHeader1 method),

76
update() (baseband.vdif.header.VDIFHeader2 method),

81
update() (baseband.vdif.header.VDIFHeader3 method),

86
update() (baseband.vdif.header.VDIFLegacyHeader

method), 67
update() (baseband.vdif.header.VDIFMark5BHeader

method), 91
update() (baseband.vdif.header.VDIFSampleRateHeader

method), 62
update() (baseband.vdif.VDIFHeader method), 45
update() (baseband.vlbi_base.header.HeaderParser

method), 388
update() (baseband.vlbi_base.header.VLBIHeaderBase

method), 391

V
valid (baseband.dada.DADAFrame attribute), 229
valid (baseband.dada.frame.DADAFrame attribute),

245
valid (baseband.gsb.frame.GSBFrame attribute), 353
valid (baseband.gsb.GSBFrame attribute), 330
valid (baseband.guppi.frame.GUPPIFrame attribute),

301
valid (baseband.guppi.GUPPIFrame attribute), 270
valid (baseband.mark4.frame.Mark4Frame attribute),

197
valid (baseband.mark4.Mark4Frame attribute), 173
valid (baseband.mark5b.frame.Mark5BFrame at-

tribute), 147
valid (baseband.mark5b.Mark5BFrame attribute), 128
valid (baseband.vdif.frame.VDIFFrame attribute), 99

valid (baseband.vdif.frame.VDIFFrameSet attribute),
101

valid (baseband.vdif.VDIFFrame attribute), 37
valid (baseband.vdif.VDIFFrameSet attribute), 40
valid (baseband.vlbi_base.frame.VLBIFrameBase at-

tribute), 396
value (baseband.gsb.header.TimeGSB attribute), 338
values() (baseband.dada.DADAHeader method), 234
values() (baseband.dada.header.DADAHeader

method), 240
values() (baseband.guppi.GUPPIHeader method), 282
values() (baseband.guppi.header.GUPPIHeader

method), 296
values() (baseband.vlbi_base.header.HeaderParser

method), 388
VDIF_HEADER_CLASSES (in module base-

band.vdif.header), 92
VDIFBaseHeader (class in baseband.vdif.header), 54
VDIFFileReader (class in baseband.vdif.base), 107
VDIFFileReaderInfo (class in baseband.vdif.file_info),

103
VDIFFileWriter (class in baseband.vdif.base), 111
VDIFFrame (class in baseband.vdif ), 35
VDIFFrame (class in baseband.vdif.frame), 97
VDIFFrameSet (class in baseband.vdif ), 38
VDIFFrameSet (class in baseband.vdif.frame), 100
VDIFHeader (class in baseband.vdif ), 41
VDIFHeader (class in baseband.vdif.header), 49
VDIFHeader0 (class in baseband.vdif.header), 68
VDIFHeader1 (class in baseband.vdif.header), 72
VDIFHeader2 (class in baseband.vdif.header), 77
VDIFHeader3 (class in baseband.vdif.header), 82
VDIFLegacyHeader (class in baseband.vdif.header), 63
VDIFMark5BHeader (class in baseband.vdif.header), 86
VDIFPayload (class in baseband.vdif ), 46
VDIFPayload (class in baseband.vdif.payload), 94
VDIFSampleRateHeader (class in baseband.vdif.header),

58
VDIFStreamBase (class in baseband.vdif.base), 113
VDIFStreamReader (class in baseband.vdif.base), 114
VDIFStreamWriter (class in baseband.vdif.base), 119
verify (baseband.dada.base.DADAStreamBase at-

tribute), 256
verify (baseband.dada.base.DADAStreamReader

attribute), 260
verify (baseband.dada.base.DADAStreamWriter at-

tribute), 262
verify (baseband.gsb.base.GSBStreamBase attribute),

361
verify (baseband.gsb.base.GSBStreamReader at-

tribute), 365
verify (baseband.gsb.base.GSBStreamWriter attribute),

368

Index 499



baseband Documentation, Release 3.1.0

verify (baseband.guppi.base.GUPPIStreamBase at-
tribute), 313

verify (baseband.guppi.base.GUPPIStreamReader at-
tribute), 316

verify (baseband.guppi.base.GUPPIStreamWriter at-
tribute), 319

verify (baseband.mark4.base.Mark4StreamBase at-
tribute), 212

verify (baseband.mark4.base.Mark4StreamReader at-
tribute), 216

verify (baseband.mark4.base.Mark4StreamWriter at-
tribute), 219

verify (baseband.mark5b.base.Mark5BStreamBase at-
tribute), 158

verify (baseband.mark5b.base.Mark5BStreamReader
attribute), 162

verify (baseband.mark5b.base.Mark5BStreamWriter at-
tribute), 165

verify (baseband.vdif.base.VDIFStreamBase attribute),
114

verify (baseband.vdif.base.VDIFStreamReader at-
tribute), 117

verify (baseband.vdif.base.VDIFStreamWriter at-
tribute), 121

verify (baseband.vlbi_base.base.VLBIStreamBase at-
tribute), 405

verify (baseband.vlbi_base.base.VLBIStreamReaderBase
attribute), 408

verify (baseband.vlbi_base.base.VLBIStreamWriterBase
attribute), 410

verify (baseband.vlbi_base.file_info.VLBIStreamReaderInfo
attribute), 419

verify() (baseband.dada.DADAFrame method), 230
verify() (baseband.dada.DADAHeader method), 234
verify() (baseband.dada.frame.DADAFrame method),

246
verify() (baseband.dada.header.DADAHeader

method), 240
verify() (baseband.gsb.frame.GSBFrame method), 354
verify() (baseband.gsb.GSBFrame method), 331
verify() (baseband.gsb.GSBHeader method), 334
verify() (baseband.gsb.header.GSBHeader method),

342
verify() (baseband.gsb.header.GSBPhasedHeader

method), 348
verify() (baseband.gsb.header.GSBRawdumpHeader

method), 345
verify() (baseband.guppi.frame.GUPPIFrame

method), 302
verify() (baseband.guppi.GUPPIFrame method), 271
verify() (baseband.guppi.GUPPIHeader method), 282
verify() (baseband.guppi.header.GUPPIHeader

method), 296
verify() (baseband.mark4.frame.Mark4Frame method),

198
verify() (baseband.mark4.header.Mark4Header

method), 191
verify() (baseband.mark4.header.Mark4TrackHeader

method), 186
verify() (baseband.mark4.Mark4Frame method), 174
verify() (baseband.mark4.Mark4Header method), 179
verify() (baseband.mark5b.frame.Mark5BFrame

method), 148
verify() (baseband.mark5b.header.Mark5BHeader

method), 141
verify() (baseband.mark5b.Mark5BFrame method),

129
verify() (baseband.mark5b.Mark5BHeader method),

134
verify() (baseband.vdif.frame.VDIFFrame method), 99
verify() (baseband.vdif.header.VDIFBaseHeader

method), 58
verify() (baseband.vdif.header.VDIFHeader method),

53
verify() (baseband.vdif.header.VDIFHeader0 method),

72
verify() (baseband.vdif.header.VDIFHeader1 method),

77
verify() (baseband.vdif.header.VDIFHeader2 method),

81
verify() (baseband.vdif.header.VDIFHeader3 method),

86
verify() (baseband.vdif.header.VDIFLegacyHeader

method), 67
verify() (baseband.vdif.header.VDIFMark5BHeader

method), 92
verify() (baseband.vdif.header.VDIFSampleRateHeader

method), 63
verify() (baseband.vdif.VDIFFrame method), 38
verify() (baseband.vdif.VDIFHeader method), 45
verify() (baseband.vlbi_base.frame.VLBIFrameBase

method), 397
verify() (baseband.vlbi_base.header.VLBIHeaderBase

method), 391
VLBIFileBase (class in baseband.vlbi_base.base), 398
VLBIFileReaderBase (class in base-

band.vlbi_base.base), 399
VLBIFileReaderInfo (class in base-

band.vlbi_base.file_info), 414
VLBIFrameBase (class in baseband.vlbi_base.frame), 395
VLBIHeaderBase (class in baseband.vlbi_base.header),

388
VLBIInfoBase (class in baseband.vlbi_base.file_info),

413
VLBIInfoMeta (class in baseband.vlbi_base.file_info),

412
VLBIPayloadBase (class in base-

band.vlbi_base.payload), 392

500 Index



baseband Documentation, Release 3.1.0

VLBIStreamBase (class in baseband.vlbi_base.base), 403
VLBIStreamReaderBase (class in base-

band.vlbi_base.base), 405
VLBIStreamReaderInfo (class in base-

band.vlbi_base.file_info), 417
VLBIStreamWriterBase (class in base-

band.vlbi_base.base), 409

W
warnings (baseband.guppi.file_info.GUPPIFileReaderInfo

attribute), 304
warnings (baseband.mark4.file_info.Mark4FileReaderInfo

attribute), 202
warnings (baseband.mark5b.file_info.Mark5BFileReaderInfo

attribute), 151
warnings (baseband.vdif.file_info.VDIFFileReaderInfo

attribute), 105
warnings (baseband.vlbi_base.file_info.VLBIFileReaderInfo

attribute), 417
warnings (baseband.vlbi_base.file_info.VLBIStreamReaderInfo

attribute), 419
words2stream() (in module baseband.mark4.header),

182
write() (baseband.dada.base.DADAStreamWriter

method), 263
write() (baseband.gsb.base.GSBStreamWriter method),

369
write() (baseband.guppi.base.GUPPIStreamWriter

method), 320
write() (baseband.helpers.sequentialfile.SequentialFileWriter

method), 381
write() (baseband.mark4.base.Mark4StreamWriter

method), 220
write() (baseband.mark5b.base.Mark5BStreamWriter

method), 166
write() (baseband.vdif.base.VDIFStreamWriter

method), 121
write() (baseband.vlbi_base.base.VLBIStreamWriterBase

method), 411
write_frame() (baseband.dada.base.DADAFileWriter

method), 255
write_frame() (baseband.guppi.base.GUPPIFileWriter

method), 311
write_frame() (baseband.mark4.base.Mark4FileWriter

method), 211
write_frame() (baseband.mark5b.base.Mark5BFileWriter

method), 156
write_frame() (baseband.vdif.base.VDIFFileWriter

method), 112
write_frameset() (baseband.vdif.base.VDIFFileWriter

method), 112
write_payload() (baseband.gsb.base.GSBFileWriter

method), 360

write_timestamp() (base-
band.gsb.base.GSBTimeStampIO method),
358

Index 501


	I Overview
	Installation
	Getting Started with Baseband
	Using Baseband
	Glossary

	II Specific File Formats
	VDIF
	MARK 5B
	MARK 4
	DADA
	GUPPI
	GSB

	III Core Framework and Utilities
	Baseband Helpers
	VLBI Base
	Sample Data Files

	IV Developer Documentation
	Supporting a New VDIF EDV
	Release Procedure

	V Project Details
	Authors and Credits
	Full Changelog
	Licenses

	VI Reference/API
	baseband Package
	Python Module Index
	Index


