

Baseband

Welcome to the Baseband documentation! Baseband is a package
affiliated [https://www.astropy.org/affiliated/index.html] with the
Astropy project [https://www.astropy.org] for reading and
writing VLBI and other radio baseband files, with the aim of simplifying and
streamlining data conversion and standardization. It provides:

	File input/output objects for supported radio baseband formats, enabling
selective decoding of data into Numpy arrays [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray], and encoding
user-defined arrays into baseband formats. Supported formats are listed under
specific file formats.

	The ability to read from and write to an ordered sequence of files as if it
was a single file.

If you used this package in your research, please cite it via DOI
10.5281/zenodo.1214268 [https://doi.org/10.5281/zenodo.1214268].

Overview

	Installation
	Requirements

	Installing Baseband

	Testing the Installation

	Building Documentation

	Getting Started with Baseband
	Opening Files

	Reading Files

	Using Baseband
	Inspecting Files

	Reading Files

	Writing to Files and Format Conversion

	Reading or Writing to a Sequence of Files

	Diagnosing problems with baseband files

	Glossary

Specific File Formats

Baseband’s code is subdivided into its supported file formats, and the
following sections contain format specifications, usage notes,
troubleshooting help and APIs for each.

	VDIF

	MARK 5B

	MARK 4

	DADA

	GUPPI

	GSB

Core Framework and Utilities

These sections contain APIs and usage notes for the sequential file opener,
the API for the set of core utility functions and classes located in
vlbi_base, and sample data that come with baseband (mostly
used for testing).

	Baseband Helpers

	VLBI Base

	Sample Data Files

Developer Documentation

The developer documentation feature tutorials for supporting new formats or
format extensions such as VDIF EDV. It also contains instructions for
publishing new code releases.

	Supporting a New VDIF EDV

	Release Procedure

Project Details

[image: Powered by Astropy Badge]
 [https://www.astropy.org/][image: _images/zenodo.1214268.svg]
 [https://doi.org/10.5281/zenodo.1214268][image: _images/baseband.svg]
 [https://travis-ci.org/mhvk/baseband][image: _images/badge.svg]
 [https://coveralls.io/github/mhvk/baseband][image: Documentation Status]
 [https://baseband.readthedocs.io/en/latest/?badge=latest]

	Authors and Credits

	Full Changelog

	Licenses

Reference/API

baseband Package

Radio baseband I/O.

Functions

	file_info(name[, format])

	Get format and other information from a baseband file.

	open(name[, mode, format])

	Open a baseband file (or sequence of files) for reading or writing.

	test(**kwargs)

	Run the tests for the package.

Installation

Requirements

Baseband requires:

	Astropy [https://www.astropy.org] v3.0 or later

	Numpy [https://www.numpy.org/] v1.10 or later

Installing Baseband

To install Baseband with pip [https://pip.pypa.io/],
run:

pip3 install baseband

Note

To run without pip potentially updating Numpy and Astropy, run, include the
--no-deps flag.

Obtaining Source Code

The source code and latest development version of Baseband can found on its
GitHub repo [https://github.com/mhvk/baseband]. You can get your own clone
using:

git clone git@github.com:mhvk/baseband.git

Of course, it is even better to fork it on GitHub, and then clone your own
repository, so that you can more easily contribute!

Running Code without Installing

As Baseband is purely Python, it can be used without being built or installed,
by appending the directory it is located in to the PYTHON_PATH environment
variable. Alternatively, you can use sys.path [https://docs.python.org/3/library/sys.html#sys.path] within Python to append
the path:

import sys
sys.path.append(BASEBAND_PATH)

where BASEBAND_PATH is the directory you downloaded or cloned Baseband into.

Installing Source Code

If you want Baseband to be more broadly available, either to all users on a
system, or within, say, a virtual environment, use setup.py in
the root directory by calling:

python3 setup.py install

For general information on setup.py, see its documentation [https://docs.python.org/3.5/install/index.html#install-index] . Many of the
setup.py options are inherited from Astropy (specifically, from Astropy
-affiliated package manager [https://github.com/astropy/package-template]) and
are described further in Astropy’s installation documentation [https://astropy.readthedocs.io/en/stable/install.html] .

Testing the Installation

The root directory setup.py can also be used to test if Baseband can
successfully be run on your system:

python3 setup.py test

or, inside of Python:

import baseband
baseband.test()

These tests require pytest [https://pytest.org] to be installed. Further
documentation can be found on the Astropy running tests documentation [https://astropy.readthedocs.io/en/stable/development/testguide.html#running-tests]
.

Building Documentation

Note

As with Astropy, building the documentation is unnecessary unless you
are writing new documentation or do not have internet access, as Baseband’s
documentation is available online at baseband.readthedocs.io [https://baseband.readthedocs.io].

The Baseband documentation can be built again using setup.py from
the root directory:

python3 setup.py build_docs

This requires to have Sphinx [https://www.sphinx-doc.org] installed (and its
dependencies).

Getting Started with Baseband

This quickstart tutorial is meant to help the reader hit the ground running
with Baseband. For more detail, including writing to files, see Using
Baseband.

For installation instructions, please see Installing Baseband.

When using Baseband, we typically will also use numpy [https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy], astropy.units [http://docs.astropy.org/en/stable/units/index.html#module-astropy.units], and
astropy.time.Time [http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time]. Let’s import all of these:

>>> import baseband
>>> import numpy as np
>>> import astropy.units as u
>>> from astropy.time import Time

Opening Files

For this tutorial, we’ll use two sample files:

>>> from baseband.data import SAMPLE_VDIF, SAMPLE_MARK5B

The first file is a VDIF one created from EVN [https://www.evlbi.org/]/VLBA [https://public.nrao.edu/telescopes/vlba/] observations of Black Widow
pulsar PSR B1957+20 [https://en.wikipedia.org/wiki/Black_Widow_Pulsar],
while the second is a Mark 5B from EVN/WSRT [https://www.astron.nl/radio-observatory/public/public-0] observations of the
same pulsar.

To open the VDIF file:

>>> fh_vdif = baseband.open(SAMPLE_VDIF)

Opening the Mark 5B file is slightly more involved, as not all required
metadata is stored in the file itself:

>>> fh_m5b = baseband.open(SAMPLE_MARK5B, nchan=8, sample_rate=32*u.MHz,
... ref_time=Time('2014-06-13 12:00:00'))

Here, we’ve manually passed in as keywords the number of channels, the
sample rate (number of samples per channel per second) as an
astropy.units.Quantity [http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity], and a reference time within 500 days of the start of
the observation as an astropy.time.Time [http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time]. That last keyword is needed to
properly read timestamps from the Mark 5B file.

baseband.open tries to open files using all available formats, returning
whichever is successful. If you know the format of your file, you can pass
its name with the format keyword, or directly use its format opener (for
VDIF, it is baseband.vdif.open). Also, the baseband.file_info function can
help determine the format and any missing information needed by baseband.open
- see Inspecting Files.

Do you have a sequence of files you want to read in? You can pass a list of
filenames to baseband.open, and it will open them up as if they were a single
file! See Reading or Writing to a Sequence of Files.

Reading Files

Radio baseband files are generally composed of blocks of binary data, or
payloads, stored alongside corresponding metadata, or headers. Each
header and payload combination is known as a data frame, and most
formats feature files composed of a long series of frames.

Baseband file objects are frame-reading wrappers around Python file objects,
and have the same interface, including
seek
for seeking to different parts of the file,
tell for reporting the file
pointer’s current position, and
read for reading data. The
main difference is that Baseband file objects read and navigate in units of
samples.

Let’s read some samples from the VDIF file:

>>> data = fh_vdif.read(3)
>>> data
array([[-1. , 1. , 1. , -1. , -1. , -1. ,
 3.316505, 3.316505],
 [-1. , 1. , -1. , 1. , 1. , 1. ,
 3.316505, 3.316505],
 [3.316505, 1. , -1. , -1. , 1. , 3.316505,
 -3.316505, 3.316505]], dtype=float32)
>>> data.shape
(3, 8)

Baseband decodes binary data into ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] objects. Notice we
input 3, and received an array of shape (3, 8); this is because
there are 8 VDIF threads. Threads and channels represent different
components of the data such as polarizations or frequency sub-bands, and the
collection of all components at one point in time is referred to as a
complete sample. Baseband reads in units of complete samples,
and works with sample rates in units of complete samples per second (including
with the Mark 5B example above). Like an ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray], calling
fh_vdif.shape returns the shape of the entire dataset:

>>> fh_vdif.shape
(40000, 8)

The first axis represents time, and all additional axes represent the shape of
a complete sample. A labelled version of the complete sample shape is given
by:

>>> fh_vdif.sample_shape
SampleShape(nthread=8)

Baseband extracts basic properties and header metadata from opened files.
Notably, the start and end times of the file are given by:

>>> fh_vdif.start_time
<Time object: scale='utc' format='isot' value=2014-06-16T05:56:07.000000000>
>>> fh_vdif.stop_time
<Time object: scale='utc' format='isot' value=2014-06-16T05:56:07.001250000>

For an overview of the file, we can either print fh_vdif itself, or use the
info method:

>>> fh_vdif
<VDIFStreamReader name=... offset=3
 sample_rate=32.0 MHz, samples_per_frame=20000,
 sample_shape=SampleShape(nthread=8),
 bps=2, complex_data=False, edv=3, station=65532,
 start_time=2014-06-16T05:56:07.000000000>
>>> fh_vdif.info
Stream information:
start_time = 2014-06-16T05:56:07.000000000
stop_time = 2014-06-16T05:56:07.001250000
sample_rate = 32.0 MHz
shape = (40000, 8)
format = vdif
bps = 2
complex_data = False
verify = fix
readable = True

checks: decodable: True
 continuous: no obvious gaps

File information:
edv = 3
number_of_frames = 16
thread_ids = [0, 1, 2, 3, 4, 5, 6, 7]
number_of_framesets = 2
frame_rate = 1600.0 Hz
samples_per_frame = 20000
sample_shape = (8, 1)

Seeking is also done in units of complete samples, which is equivalent to
seeking in timesteps. Let’s move forward 100 complete samples:

>>> fh_vdif.seek(100)
100

Seeking from the end or current position is also possible, using the same
syntax as for typical file objects. It is also possible to seek in units of
time:

>>> fh_vdif.seek(-1000, 2) # Seek 1000 samples from end.
39000
>>> fh_vdif.seek(10*u.us, 1) # Seek 10 us from current position.
39320

fh_vdif.tell returns the current offset in samples or in time:

>>> fh_vdif.tell()
39320
>>> fh_vdif.tell(unit=u.us) # Time since start of file.
<Quantity 1228.75 us>
>>> fh_vdif.tell(unit='time')
<Time object: scale='utc' format='isot' value=2014-06-16T05:56:07.001228750>

Finally, we close both files:

>>> fh_vdif.close()
>>> fh_m5b.close()

Using Baseband

For most file formats, one can simply import baseband and use baseband.open
to access the file. This gives one a filehandle from which one can read
decoded samples:

>>> import baseband
>>> from baseband.data import SAMPLE_DADA
>>> fh = baseband.open(SAMPLE_DADA)
>>> fh.read(3)
array([[-38.-38.j, -38.-38.j],
 [-38.-38.j, -40. +0.j],
 [-105.+60.j, 85.-15.j]], dtype=complex64)
>>> fh.close()

For other file formats, a bit more information is needed. Below, we cover the
basics of inspecting files, reading from and writing
to files, converting from one format
to another, and diagnosing problems.
We assume that Baseband as well as NumPy [https://www.numpy.org/] and the
Astropy [https://www.astropy.org] units module have been imported:

>>> import baseband
>>> import numpy as np
>>> import astropy.units as u

Inspecting Files

Baseband allows you to quickly determine basic properties of a file, including
what format it is, using the baseband.file_info function. For instance, it
shows that the sample VDIF file that comes with Baseband is very short (sample
files can all be found in the baseband.data module):

>>> import baseband.data
>>> baseband.file_info(baseband.data.SAMPLE_VDIF)
Stream information:
start_time = 2014-06-16T05:56:07.000000000
stop_time = 2014-06-16T05:56:07.001250000
sample_rate = 32.0 MHz
shape = (40000, 8)
format = vdif
bps = 2
complex_data = False
verify = fix
readable = True

checks: decodable: True
 continuous: no obvious gaps

File information:
edv = 3
number_of_frames = 16
thread_ids = [0, 1, 2, 3, 4, 5, 6, 7]
number_of_framesets = 2
frame_rate = 1600.0 Hz
samples_per_frame = 20000
sample_shape = (8, 1)

The same function will also tell you when more information is needed. For
instance, for Mark 5B files one needs the number of channels used, as well as
(roughly) when the data were taken:

>>> baseband.file_info(baseband.data.SAMPLE_MARK5B)
File information:
format = mark5b
number_of_frames = 4
frame_rate = 6400.0 Hz
bps = 2
complex_data = False
readable = False

missing: nchan: needed to determine sample shape, frame rate, decode data.
 kday, ref_time: needed to infer full times.

>>> from astropy.time import Time
>>> baseband.file_info(baseband.data.SAMPLE_MARK5B, nchan=8, ref_time=Time('2014-01-01'))
Stream information:
start_time = 2014-06-13T05:30:01.000000000
stop_time = 2014-06-13T05:30:01.000625000
sample_rate = 32.0 MHz
shape = (20000, 8)
format = mark5b
bps = 2
complex_data = False
verify = fix
readable = True

checks: decodable: True
 continuous: no obvious gaps

File information:
number_of_frames = 4
frame_rate = 6400.0 Hz
samples_per_frame = 5000
sample_shape = (8,)

The information is gleaned from info properties on the various file and
stream readers (see below).

Note

The one format for which file_info works a bit differently is
GSB, as this format requires separate time-stamp and raw data
files. Only the timestamp file can be inspected usefully.

Reading Files

Opening Files

As shown at the very start, files can be opened with the general
baseband.open function. This will try to determine the file type using
file_info, load the corresponding baseband module, and then open
the file using that module’s master input/output function.

Generally, if one knows the file type, one might as well work with the
corresponding module directly. For instance, to explicitly use the DADA
reader to open the sample DADA file included in Baseband, one can use the DADA
module’s open function:

>>> from baseband import dada
>>> from baseband.data import SAMPLE_DADA
>>> fh = dada.open(SAMPLE_DADA, 'rs')
>>> fh.read(3)
array([[-38.-38.j, -38.-38.j],
 [-38.-38.j, -40. +0.j],
 [-105.+60.j, 85.-15.j]], dtype=complex64)
>>> fh.close()

In general, file I/O and data manipulation use the same syntax across all file
formats. When opening Mark 4 and Mark 5B files, however, some additional
arguments may need to be passed (as was the case above for inspecting a Mark
5B file, and indeed this is a good way to find out what is needed).
Notes on such features and quirks of individual formats can be
found in the API entries of their open functions, and within the
Specific file format documentation.

For the rest of this section, we will stick to VDIF files.

Decoding Data and the Sample File Pointer

By giving the openers a 'rs' flag, which is the default, we open files in
“stream reader” mode, where a file is accessed as if it were a stream of
samples. For VDIF, open will then return an instance of
VDIFStreamReader, which wraps a raw data file with
methods to decode the binary data frames and seek to and read data
samples. To decode the first 12 samples into a ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray], we would
use the read method:

>>> from baseband import vdif
>>> from baseband.data import SAMPLE_VDIF
>>> fh = vdif.open(SAMPLE_VDIF, 'rs')
>>> d = fh.read(12)
>>> type(d)
<... 'numpy.ndarray'>
>>> d.shape
(12, 8)
>>> d[:, 0].astype(int) # First thread.
array([-1, -1, 3, -1, 1, -1, 3, -1, 1, 3, -1, 1])

As discussed in detail in the VDIF section, VDIF files are
sequences of data frames, each of which is comprised of a header (which
holds information like the time at which the data was taken) and a
payload, or block of data. Multiple concurrent time streams can be
stored within a single frame; each of these is called a “channel”.
Moreover, groups of channels can be stored over multiple frames, each of which
is called a “thread”. Our sample file is an “8-thread, single-channel
file” (8 concurrent time streams with 1 stream per frame), and in the example
above, fh.read decoded the first 12 samples from all 8 threads, mapping
thread number to the second axis of the decoded data array. Reading files with
multiple threads and channels will produce 3-dimensional arrays.

fh includes shape, size and ndim, which give the shape, total
number of elements and dimensionality of the file’s entire dataset if it was
decoded into an array. The number of complete samples - the set of samples
from all available threads and channels for one point in time - in the file is
given by the first element in shape:

>>> fh.shape # Shape of all data from the file in decoded array form.
(40000, 8)
>>> fh.shape[0] # Number of complete samples.
40000
>>> fh.size
320000
>>> fh.ndim
2

The shape of a single complete sample, including names indicating the meaning
of shape dimensions, is retrievable using:

>>> fh.sample_shape
SampleShape(nthread=8)

By default, dimensions of length unity are squeezed, or removed from the
sample shape. To retain them, we can pass squeeze=False to
open:

>>> fhns = vdif.open(SAMPLE_VDIF, 'rs', squeeze=False)
>>> fhns.sample_shape # Sample shape now keeps channel dimension.
SampleShape(nthread=8, nchan=1)
>>> fhns.ndim # fh.shape and fh.ndim also change with squeezing.
3
>>> d2 = fhns.read(12)
>>> d2.shape # Decoded data has channel dimension.
(12, 8, 1)
>>> fhns.close()

Basic information about the file is obtained by either by fh.info or simply
fh itself:

>>> fh.info
Stream information:
start_time = 2014-06-16T05:56:07.000000000
stop_time = 2014-06-16T05:56:07.001250000
sample_rate = 32.0 MHz
shape = (40000, 8)
format = vdif
bps = 2
complex_data = False
verify = fix
readable = True

checks: decodable: True
 continuous: no obvious gaps

File information:
edv = 3
number_of_frames = 16
thread_ids = [0, 1, 2, 3, 4, 5, 6, 7]
number_of_framesets = 2
frame_rate = 1600.0 Hz
samples_per_frame = 20000
sample_shape = (8, 1)

>>> fh
<VDIFStreamReader name=... offset=12
 sample_rate=32.0 MHz, samples_per_frame=20000,
 sample_shape=SampleShape(nthread=8),
 bps=2, complex_data=False, edv=3, station=65532,
 start_time=2014-06-16T05:56:07.000000000>

Not coincidentally, the first is identical to what we found above using file_info.

The filehandle itself also shows the offset, the current location of the
sample file pointer. Above, it is at 12 since we have read in 12 (complete)
samples. If we called fh.read (12) again we would get the next 12 samples.
If we instead called fh.read(), it would read from the pointer’s current
position to the end of the file. If we wanted all the data in one array, we
would move the file pointer back to the start of file, using fh.seek,
before reading:

>>> fh.seek(0) # Seek to sample 0. Seek returns its offset in counts.
0
>>> d_complete = fh.read()
>>> d_complete.shape
(40000, 8)

We can also move the pointer with respect to the end of file by passing 2
as a second argument:

>>> fh.seek(-100, 2) # Second arg is 0 (start of file) by default.
39900
>>> d_end = fh.read(100)
>>> np.array_equal(d_complete[-100:], d_end)
True

-100 means 100 samples before the end of file, so d_end is equal to
the last 100 entries of d_complete. Baseband only keeps the most recently
accessed data frame in memory, making it possible to analyze (normally large)
files through selective decoding using seek and read.

Note

As with file pointers in general, fh.seek will not return an error if
one seeks beyond the end of file. Attempting to read beyond
the end of file, however, will result in an EOFError.

To determine where the pointer is located, we use fh.tell():

>>> fh.tell()
40000
>>> fh.close()

Caution should be used when decoding large blocks of data using fh.read.
For typical files, the resulting arrays are far too large to hold in memory.

Seeking and Telling in Time With the Sample Pointer

We can use seek and tell with units of time rather than samples. To do
this with tell, we can pass an appropriate astropy.units.Unit [http://docs.astropy.org/en/stable/api/astropy.units.Unit.html#astropy.units.Unit] object to
its optional unit parameter:

>>> fh = vdif.open(SAMPLE_VDIF, 'rs')
>>> fh.seek(40000)
40000
>>> fh.tell(unit=u.ms)
<Quantity 1.25 ms>

Passing the string 'time' reports the pointer’s location in absolute time:

>>> fh.tell(unit='time')
<Time object: scale='utc' format='isot' value=2014-06-16T05:56:07.001250000>

We can also pass an absolute astropy.time.Time [http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time], or a positive or negative time
difference TimeDelta [http://docs.astropy.org/en/stable/api/astropy.time.TimeDelta.html#astropy.time.TimeDelta] or astropy.units.Quantity [http://docs.astropy.org/en/stable/api/astropy.units.Quantity.html#astropy.units.Quantity] to seek.
If the offset is a Time [http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time] object, the second argument to seek is
ignored.:

>>> from astropy.time.core import TimeDelta
>>> from astropy.time import Time
>>> fh.seek(TimeDelta(-5e-4, format='sec'), 2) # Seek -0.5 ms from end.
24000
>>> fh.seek(0.25*u.ms, 1) # Seek 0.25 ms from current position.
32000
>>> # Seek to specific time.
>>> fh.seek(Time('2014-06-16T05:56:07.001125'))
36000

We can retrieve the time of the first sample in the file using start_time,
the time immediately after the last sample using stop_time, and the time
of the pointer’s current location (equivalent to fh.tell(unit='time'))
using time:

>>> fh.start_time
<Time object: scale='utc' format='isot' value=2014-06-16T05:56:07.000000000>
>>> fh.stop_time
<Time object: scale='utc' format='isot' value=2014-06-16T05:56:07.001250000>
>>> fh.time
<Time object: scale='utc' format='isot' value=2014-06-16T05:56:07.001125000>
>>> fh.close()

Extracting Header Information

The first header of the file is stored as the header0 attribute of the
stream reader object; it gives direct access to header properties via keyword
lookup:

>>> with vdif.open(SAMPLE_VDIF, 'rs') as fh:
... header0 = fh.header0
>>> header0['frame_length']
629

The full list of keywords is available by printing out header0:

>>> header0
<VDIFHeader3 invalid_data: False,
 legacy_mode: False,
 seconds: 14363767,
 _1_30_2: 0,
 ref_epoch: 28,
 frame_nr: 0,
 vdif_version: 1,
 lg2_nchan: 0,
 frame_length: 629,
 complex_data: False,
 bits_per_sample: 1,
 thread_id: 1,
 station_id: 65532,
 edv: 3,
 sampling_unit: True,
 sampling_rate: 16,
 sync_pattern: 0xacabfeed,
 loif_tuning: 859832320,
 _7_28_4: 15,
 dbe_unit: 2,
 if_nr: 0,
 subband: 1,
 sideband: True,
 major_rev: 1,
 minor_rev: 5,
 personality: 131>

A number of derived properties, such as the time (as a Time [http://docs.astropy.org/en/stable/api/astropy.time.Time.html#astropy.time.Time]
object), are also available through the header object:

>>> header0.time
<Time object: scale='utc' format='isot' value=2014-06-16T05:56:07.000000000>

These are listed in the API for each header class. For example, the sample
VDIF file’s headers are of class:

>>> type(header0)
<class 'baseband.vdif.header.VDIFHeader3'>

and so its attributes can be found here.

Reading Specific Components of the Data

By default, fh.read() returns complete samples, i.e. with all
available threads, polarizations or channels. If we were only interested in
decoding a subset of the complete sample, we can select specific
components by passing indexing objects to the subset keyword in open. For
example, if we only wanted thread 3 of the sample VDIF file:

>>> fh = vdif.open(SAMPLE_VDIF, 'rs', subset=3)
>>> fh.sample_shape
()
>>> d = fh.read(20000)
>>> d.shape
(20000,)
>>> fh.subset
(3,)
>>> fh.close()

Since by default data are squeezed, one obtains a data stream with just a
single dimension. If one would like to keep all information, one has to pass
squeeze=False and also make subset a list (or slice):

>>> fh = vdif.open(SAMPLE_VDIF, 'rs', subset=[3], squeeze=False)
>>> fh.sample_shape
SampleShape(nthread=1, nchan=1)
>>> d = fh.read(20000)
>>> d.shape
(20000, 1, 1)
>>> fh.close()

Data with multi-dimensional samples can be subset by passing a tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of
indexing objects with the same dimensional ordering as the (possibly squeezed)
sample shape; in the case of the sample VDIF with squeeze=False, this is
threads, then channels. For example, if we wished to select threads 1 and 3,
and channel 0:

>>> fh = vdif.open(SAMPLE_VDIF, 'rs', subset=([1, 3], 0), squeeze=False)
>>> fh.sample_shape
SampleShape(nthread=2)
>>> fh.close()

Generally, subset accepts any object that can be used to index [https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.indexing.html] a
numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray], including advanced indexing (as done above, with
subset=([1, 3], 0)). If possible, slices should be used instead
of list of integers, since indexing with them returns a view rather
than a copy and thus avoid unnecessary processing and memory allocation.
(An exception to this is VDIF threads, where the subset is used to selectively
read specific threads, and thus is not used for actual slicing of the data.)

Writing to Files and Format Conversion

Writing to a File

To write data to disk, we again use open. Writing data in a particular
format requires both the header and data samples. For modifying an existing
file, we have both the old header and old data handy.

As a simple example, let’s read in the 8-thread, single-channel sample VDIF
file and rewrite it as an single-thread, 8-channel one, which, for example, may
be necessary for compatibility with DSPSR [https://github.com/demorest/dspsr]:

>>> import baseband.vdif as vdif
>>> from baseband.data import SAMPLE_VDIF
>>> fr = vdif.open(SAMPLE_VDIF, 'rs')
>>> fw = vdif.open('test_vdif.vdif', 'ws',
... sample_rate=fr.sample_rate,
... samples_per_frame=fr.samples_per_frame // 8,
... nthread=1, nchan=fr.sample_shape.nthread,
... complex_data=fr.complex_data, bps=fr.bps,
... edv=fr.header0.edv, station=fr.header0.station,
... time=fr.start_time)

The minimal parameters needed to generate a file are listed under the
documentation for each format’s open, though comprehensive lists can be
found in the documentation for each format’s stream writer class (eg. for
VDIF, it’s under VDIFStreamWriter). In practice we
specify as many relevant header properties as available to obtain a particular
file structure. If we possess the exact first header of the file, it can
simply be passed to open via the header keyword. In the example above,
though, we manually switch the values of nthread and nchan. Because
VDIF EDV = 3 requires each frame’s payload to contain 5000 bytes, and nchan
is now a factor of 8 larger, we decrease samples_per_frame, the number of
complete (i.e. all threads and channels included) samples per frame, by a
factor of 8.

Encoding samples and writing data to file is done by passing data arrays into
fw’s write method. The first
dimension of the arrays is sample number, and the remaining dimensions must be
as given by fw.sample_shape:

>>> fw.sample_shape
SampleShape(nchan=8)

In this case, the required dimensions are the same as the arrays from
fr.read. We can thus write the data to file using:

>>> while fr.tell() < fr.shape[0]:
... fw.write(fr.read(fr.samples_per_frame))
>>> fr.close()
>>> fw.close()

For our sample file, we could simply have written

fw.write(fr.read())

instead of the loop, but for large files, reading and writing should be done in
smaller chunks to minimize memory usage. Baseband stores only the data frame
or frame set being read or written to in memory.

We can check the validity of our new file by re-opening it:

>>> fr = vdif.open(SAMPLE_VDIF, 'rs')
>>> fh = vdif.open('test_vdif.vdif', 'rs')
>>> fh.sample_shape
SampleShape(nchan=8)
>>> np.all(fr.read() == fh.read())
True
>>> fr.close()
>>> fh.close()

Note

One can also use the top-level open function for writing,
with the file format passed in via its format argument.

File Format Conversion

It is often preferable to convert data from one file format to another that
offers wider compatibility, or better fits the structure of the data. As an
example, we convert the sample Mark 4 data to VDIF.

Since we don’t have a VDIF header handy, we pass the relevant Mark 4 header
values into vdif.open to create one:

>>> import baseband.mark4 as mark4
>>> from baseband.data import SAMPLE_MARK4
>>> fr = mark4.open(SAMPLE_MARK4, 'rs', ntrack=64, decade=2010)
>>> spf = 640 # fanout * 160 = 640 invalid samples per Mark 4 frame
>>> fw = vdif.open('m4convert.vdif', 'ws', sample_rate=fr.sample_rate,
... samples_per_frame=spf, nthread=1,
... nchan=fr.sample_shape.nchan,
... complex_data=fr.complex_data, bps=fr.bps,
... edv=1, time=fr.start_time)

We choose edv = 1 since it’s the simplest VDIF EDV whose header includes a
sampling rate. The concept of threads does not exist in Mark 4, so the file
effectively has nthread = 1. As discussed in the Mark 4
documentation, the data at the start of each frame is effectively
overwritten by the header and are represented by invalid samples in the stream
reader. We set samples_per_frame to 640 so that each section of
invalid data is captured in a single frame.

We now write the data to file, manually flagging each invalid data frame:

>>> while fr.tell() < fr.shape[0]:
... d = fr.read(fr.samples_per_frame)
... fw.write(d[:640], valid=False)
... fw.write(d[640:])
>>> fr.close()
>>> fw.close()

Lastly, we check our new file:

>>> fr = mark4.open(SAMPLE_MARK4, 'rs', ntrack=64, decade=2010)
>>> fh = vdif.open('m4convert.vdif', 'rs')
>>> np.all(fr.read() == fh.read())
True
>>> fr.close()
>>> fh.close()

For file format conversion in general, we have to consider how to properly
scale our data to make the best use of the dynamic range of the new encoded
format. For VLBI formats like VDIF, Mark 4 and Mark 5B, samples of the same
size have the same scale, which is why we did not have to rescale our data when
writing 2-bits-per-sample Mark 4 data to a 2-bits-per-sample VDIF file.
Rescaling is necessary, though, to convert DADA or GSB to VDIF. For examples
of rescaling, see the baseband/tests/test_conversion.py file.

Reading or Writing to a Sequence of Files

Data from one continuous observation is sometimes spread over a sequence of
files. Baseband includes the sequentialfile module for
reading in a sequence as if it were one contiguous file. This module is called
when a list, tuple or filename template is passed to eg. baseband.open or
baseband.vdif.open, making the syntax for handling multiple files nearly
identical to that for single ones.

As an example, we write the data from the sample VDIF file
baseband/data/sample.vdif into a sequence of two files and then read the
files back in. We first load the required data:

>>> from baseband import vdif
>>> from baseband.data import SAMPLE_VDIF
>>> import numpy as np
>>> fh = vdif.open(SAMPLE_VDIF, 'rs')
>>> d = fh.read()

We then create a sequence of filenames:

>>> filenames = ["seqvdif_{0}".format(i) for i in range(2)]

When passing filenames to open, we must also pass
file_size, the file size in bytes, in addition to the usual kwargs for
writing a file. Since we wish to split the sample file in two, and the file
consists of two framesets, we set file_size to the byte size of one
frameset (we could have equivalently set it to fh.fh_raw.seek(0, 2) // 2):

>>> file_size = 8 * fh.header0.frame_nbytes
>>> fw = vdif.open(filenames, 'ws', header0=fh.header0,
... file_size=file_size, sample_rate=fh.sample_rate,
... nthread=fh.sample_shape.nthread)
>>> fw.write(d)
>>> fw.close() # This implicitly closes fwr.

Note

file_size sets the maximum size a file can reach before the
writer writes to the next one, so setting file_size to a larger
value than above will lead to the two files having different sizes. By
default, file_size=None, meaning it can be arbitrarily large, in which
case only one file will be created.

We now read the sequence and confirm their contents are identical to those of
the sample file:

>>> fr = vdif.open(filenames, 'rs', sample_rate=fh.sample_rate)
>>> fr.header0.time == fh.header0.time
True
>>> np.all(fr.read() == d)
True
>>> fr.close()

When reading, the filename sequence must be ordered in time.

We can also open the second file on its own and confirm it contains the second
frameset of the sample file:

>>> fsf = vdif.open(filenames[1], mode='rs', sample_rate=fh.sample_rate)
>>> fh.seek(fh.shape[0] // 2) # Seek to start of second frameset.
20000
>>> fsf.header0.time == fh.time
True
>>> np.all(fsf.read() == fh.read())
True
>>> fsf.close()

In situations where the file_size is known, but not the total number of
files to write, one may use the FileNameSequencer
class to create an iterable without a user-defined size. The class is
initialized with a template string that can be formatted with keywords, and a
optional header that can either be an actual header or a dict [https://docs.python.org/3/library/stdtypes.html#dict] with the
relevant keywords. The template may also contain the special keyword
‘{file_nr}’, which is equal to the indexing value (instead of a header entry).

As an example, let us create a sequencer:

>>> from baseband.helpers import sequentialfile as sf
>>> filenames = sf.FileNameSequencer('f.edv{edv:d}.{file_nr:03d}.vdif',
... header=fh.header0)

Indexing the sequencer using square brackets returns a filename:

>>> filenames[0]
'f.edv3.000.vdif'
>>> filenames[42]
'f.edv3.042.vdif'

The sequencer has extracted the EDV from the header we passed in, and the
file number from the index. We can use the sequencer to write a VDIF file
sequence:

>>> fw = vdif.open(filenames, 'ws', header0=fh.header0,
... file_size=file_size, sample_rate=fh.sample_rate,
... nthread=fh.sample_shape.nthread)
>>> d = np.concatenate([d, d, d])
>>> fw.write(d)
>>> fw.close()

This creates 6 files:

>>> import glob
>>> len(glob.glob("f.edv*.vdif"))
6

We can read the file sequence using the same sequencer. In reading mode, the
sequencer determines the number of files by finding the largest file available
that fits the template:

>>> fr = vdif.open(filenames, 'rs', sample_rate=fh.sample_rate)
>>> fr.header0.time == fh.header0.time
True
>>> np.all(fr.read() == d)
True
>>> fr.close()
>>> fh.close() # Close sample file as well.

Because DADA and GUPPI data are usually stored in file sequences with names
derived from header values - eg. ‘puppi_58132_J1810+1744_2176.0010.raw’,
their format openers have template support built-in. For usage details, please
see the API entries for baseband.dada.open and baseband.guppi.open.

Diagnosing problems with baseband files

Little is more annoying than starting a very long analysis script only to find
the reader crashed with an error near the end. Unfortunately, while there is
only one way for success, there are many for failure. Some, though, can be
found by inspecting files. To see
what would show up for a file that misses a frame, we first construct one:

>>> from astropy.time import Time
>>> from baseband import vdif
>>> fc = vdif.open('corrupt.vdif', 'ws', edv=1, nthread=2,
... bps=8, samples_per_frame=16,
... time=Time('J2010'), sample_rate=16*u.kHz)
>>> fc.write(np.zeros((8000, 2)))
>>> fc.fh_raw.seek(-100, 1)
47900
>>> fc.write(np.zeros((8000, 2)))
>>> fc.close()

Here, rewinding the internal raw file pointer a bit to simulate “missing
bytes” is an implementation detail that one should not rely on!

Now check its info:

>>> fh = baseband.vdif.open('corrupt.vdif', 'rs', verify=True)
>>> fh.info.readable
False
>>> fh.info
Stream information:
start_time = 2009-12-31T23:58:53.816000000
stop_time = 2009-12-31T23:58:54.816000000
sample_rate = 0.016 MHz
shape = (16000, 2)
format = vdif
bps = 8
complex_data = False
verify = True
readable = False

checks: decodable: True
 continuous: False

errors: continuous: While reading at 7968: AssertionError()

warnings: number_of_frames: file contains non-integer number (1997.9166666666667) of frames

File information:
edv = 1
thread_ids = [0, 1]
frame_rate = 1000.0 Hz
samples_per_frame = 16
sample_shape = (2, 1)
>>> fh.close()

In detail, the error is given for a position earlier than the one we
corrupted, because internally baseband reads a frame ahead since a
corrupted frame typically means something is bad before as well.

This particular problem is not bad, since the VDIF reader can deal with
missing frames. Indeed, when one opens the file with the default
verify='fix', one gets:

>>> fh = baseband.vdif.open('corrupt.vdif', 'rs')
>>> fh.info
Stream information:
start_time = 2009-12-31T23:58:53.816000000
stop_time = 2009-12-31T23:58:54.816000000
sample_rate = 0.016 MHz
shape = (16000, 2)
format = vdif
bps = 8
complex_data = False
verify = fix
readable = True

checks: decodable: True
 continuous: fixable gaps

warnings: number_of_frames: file contains non-integer number (1997.9166666666667) of frames
 continuous: While reading at 7968: problem loading frame set 498. Thread(s) [1] missing; set to invalid.

File information:
edv = 1
thread_ids = [0, 1]
frame_rate = 1000.0 Hz
samples_per_frame = 16
sample_shape = (2, 1)
>>> fh.close()

Glossary

	channel
	A single component of the complete sample, or a stream
thereof. They typically represent one frequency sub-band, the output
from a single antenna, or (for channelized data) one spectral or Fourier
channel, ie. one part of a Fourier spectrum.

	complete sample
	Set of all component samples - ie. from all threads, polarizations,
channels, etc. - for one point in time. Its dimensions are given by the
sample shape.

	component
	One individual thread and channel, or one polarization
and channel, etc. Component samples each occupy one element in decoded
data arrays. A component sample is composed of one elementary
sample if it is real, and two if it is complex.

	data frame
	A block of time-sampled data, or payload, accompanied by a
header. “Frame” for short.

	data frameset
	In the VDIF format, the set of all data frames representing the same
segment of time. Each data frame consists of sets of channels from
different threads.

	elementary sample
	The smallest subdivision of a complete sample, i.e. the real / imaginary
part of one component of a complete sample.

	header
	Metadata accompanying a data frame.

	payload
	The data within a data frame.

	sample
	Data from one point in time. Complete samples contain samples from all
components, while elementary samples are one part of one component.

	sample rate
	Rate of complete samples.

	sample shape
	The lengths of the dimensions of the complete sample.

	squeezing
	The removal of any dimensions of length unity from decoded data.

	stream
	Timeseries of samples; may refer to all of, or a subsection of, the
dataset.

	subset
	A subset of a complete sample, in particular one defined by the user for
selective decoding.

	thread
	A collection of channels from the complete sample, or a
stream thereof. For VDIF, each thread is carried by a separate
(set of) data frame(s).

VDIF

The VLBI Data Interchange Format (VDIF) [https://www.vlbi.org/vdif/] was
introduced in 2009 to standardize VLBI data transfer and storage. Detailed
specifications are found in VDIF’s specification document [https://vlbi.org/wp-content/uploads/2019/03/VDIF_specification_Release_1.1.1.pdf].

File Structure

A VDIF file is composed of data frames. Each has a header of eight
32-bit words (32 bytes; the exception is the “legacy VDIF” format, which is
four words, or 16 bytes, long), and a payload that ranges from 32 bytes
to ~134 megabytes. Both are little-endian. The first four words of a VDIF
header hold the same information in all VDIF files, but the last four words
hold optional user-defined data. The layout of these four words is specified
by the file’s extended-data version, or EDV. More detailed information on
the header can be found in the tutorial for supporting a new VDIF EDV.

A data frame may carry one or multiple channels, and a stream of data
frames all carrying the same (set of) channels is known as a thread and
denoted by its thread ID. The collection of frames representing the same time
segment (and all possible thread IDs) is called a data frameset (or
just “frameset”).

Strict time and thread ID ordering of frames in the stream, while considered
part of VDIF best practices, is not mandated, and cannot be guaranteed during
data transmission over the internet.

Usage Notes

This section covers reading and writing VDIF files with Baseband; general
usage can be found under the Using Baseband section.
For situations in which one is unsure of a file’s format, Baseband features the
general baseband.open and baseband.file_info functions, which are also
discussed in Using Baseband. The examples below use
the small sample file baseband/data/sample.vdif, and the numpy [https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy],
astropy.units [http://docs.astropy.org/en/stable/units/index.html#module-astropy.units], and baseband.vdif modules:

>>> import numpy as np
>>> from baseband import vdif
>>> import astropy.units as u
>>> from baseband.data import SAMPLE_VDIF

Simple reading and writing of VDIF files can be done entirely using
open. Opening in binary mode provides a normal file
reader, but extended with methods to read a VDIFFrameSet
data container for storing a frame set as well as
VDIFFrame one for storing a single frame:

>>> fh = vdif.open(SAMPLE_VDIF, 'rb')
>>> fs = fh.read_frameset()
>>> fs.data.shape
(20000, 8, 1)
>>> fr = fh.read_frame()
>>> fr.data.shape
(20000, 1)
>>> fh.close()

(As with other formats, fr.data is a read-only property of the frame.)

Opening in stream mode wraps the low-level routines such that reading
and writing is in units of samples. It also provides access to header
information:

>>> fh = vdif.open(SAMPLE_VDIF, 'rs')
>>> fh
<VDIFStreamReader name=... offset=0
 sample_rate=32.0 MHz, samples_per_frame=20000,
 sample_shape=SampleShape(nthread=8),
 bps=2, complex_data=False, edv=3, station=65532,
 start_time=2014-06-16T05:56:07.000000000>
>>> d = fh.read(12)
>>> d.shape
(12, 8)
>>> d[:, 0].astype(int) # first thread
array([-1, -1, 3, -1, 1, -1, 3, -1, 1, 3, -1, 1])
>>> fh.close()

To set up a file for writing needs quite a bit of header information. Not
coincidentally, what is given by the reader above suffices:

>>> from astropy.time import Time
>>> fw = vdif.open('try.vdif', 'ws', sample_rate=32*u.MHz,
... samples_per_frame=20000, nchan=1, nthread=2,
... complex_data=False, bps=2, edv=3, station=65532,
... time=Time('2014-06-16T05:56:07.000000000'))
>>> with vdif.open(SAMPLE_VDIF, 'rs', subset=[1, 3]) as fh:
... d = fh.read(20000) # Get some data to write
>>> fw.write(d)
>>> fw.close()
>>> fh = vdif.open('try.vdif', 'rs')
>>> d2 = fh.read(12)
>>> np.all(d[:12] == d2)
True
>>> fh.close()

Here is a simple example to copy a VDIF file. We use the sort=False option
to ensure the frames are written exactly in the same order, so the files should
be identical:

>>> with vdif.open(SAMPLE_VDIF, 'rb') as fr, vdif.open('try.vdif', 'wb') as fw:
... while True:
... try:
... fw.write_frameset(fr.read_frameset(sort=False))
... except:
... break

For small files, one could just do:

>>> with vdif.open(SAMPLE_VDIF, 'rs') as fr, \
... vdif.open('try.vdif', 'ws', header0=fr.header0,
... sample_rate=fr.sample_rate,
... nthread=fr.sample_shape.nthread) as fw:
... fw.write(fr.read())

This copies everything to memory, though, and some header information is lost.

Troubleshooting

In situations where the VDIF files being handled are corrupted or modified
in an unusual way, using open will likely lead to an
exception being raised or to unexpected behavior. In such cases, it may still
be possible to read in the data. Below, we provide a few solutions and
workarounds to do so.

Note

This list is certainly incomplete. If you have an issue (solved
or otherwise) you believe should be on this list, please e-mail
the contributors.

AssertionError when checking EDV in header verify function

All VDIF header classes (other than VDIFLegacyHeader)
check, using their verify function, that the EDV read from file matches
the class EDV. If they do not, the following line

assert self.edv is None or self.edv == self['edv']

returns an AssertionError. If this occurs because the VDIF EDV is not yet
supported by Baseband, support can be added by implementing a custom header
class. If the EDV is supported, but the header deviates from the format
found in the VLBI.org EDV registry [https://www.vlbi.org/vdif/], the
best solution is to create a custom header class, then override the
subclass selector in VDIFHeader. Tutorials
for doing either can be found here.

EOFError encountered in _get_frame_rate when reading

When the sample rate is not input by the user and cannot be deduced from header
information (if EDV = 1 or, the sample rate is found in the header), Baseband
tries to determine the frame rate using the private method _get_frame_rate
in VDIFStreamReader (and then multiply by the
samples per frame to obtain the sample rate). This function raises EOFError [https://docs.python.org/3/library/exceptions.html#EOFError]
if the file contains less than one second of data, or is corrupt. In either
case the file can be opened still by explicitly passing in the sample rate to
open via the sample_rate keyword.

Reference/API

baseband.vdif Package

VLBI Data Interchange Format (VDIF) reader/writer

For the VDIF specification, see https://vlbi.org/vlbi-standards/vdif/

Functions

	open(name[, mode])

	Open VDIF file(s) for reading or writing.

Classes

	VDIFFrame(header, payload[, valid, verify])

	Representation of a VDIF data frame, consisting of a header and payload.

	VDIFFrameSet(frames[, header0])

	Representation of a set of VDIF frames, combining different threads.

	VDIFHeader(words[, edv, verify])

	VDIF Header, supporting different Extended Data Versions.

	VDIFPayload(words[, header, nchan, bps, …])

	Container for decoding and encoding VDIF payloads.

Class Inheritance Diagram

Inheritance diagram of baseband.vdif.frame.VDIFFrame, baseband.vdif.frame.VDIFFrameSet, baseband.vdif.header.VDIFHeader, baseband.vdif.payload.VDIFPayload

baseband.vdif.header Module

Definitions for VLBI VDIF Headers.

Implements a VDIFHeader class used to store header words, and decode/encode
the information therein.

For the VDIF specification, see https://www.vlbi.org/vdif

Classes

	VDIFHeader(words[, edv, verify])

	VDIF Header, supporting different Extended Data Versions.

	VDIFBaseHeader(words[, edv, verify])

	Base for non-legacy VDIF headers that use 8 32-bit words.

	VDIFSampleRateHeader(words[, edv, verify])

	Base for VDIF headers that include the sample rate (EDV= 1, 3, 4).

	VDIFLegacyHeader(words[, edv, verify])

	Legacy VDIF header that uses only 4 32-bit words.

	VDIFHeader0(words[, edv, verify])

	VDIF Header for EDV=0.

	VDIFHeader1(words[, edv, verify])

	VDIF Header for EDV=1.

	VDIFHeader2(words[, edv, verify])

	VDIF Header for EDV=2.

	VDIFHeader3(words[, edv, verify])

	VDIF Header for EDV=3.

	VDIFMark5BHeader(words[, edv, verify])

	Mark 5B over VDIF (EDV=0xab).

Variables

	VDIF_HEADER_CLASSES

	Dict for storing VDIF header class definitions, indexed by their EDV.

Class Inheritance Diagram

Inheritance diagram of baseband.vdif.header.VDIFHeader, baseband.vdif.header.VDIFBaseHeader, baseband.vdif.header.VDIFSampleRateHeader, baseband.vdif.header.VDIFLegacyHeader, baseband.vdif.header.VDIFHeader0, baseband.vdif.header.VDIFHeader1, baseband.vdif.header.VDIFHeader2, baseband.vdif.header.VDIFHeader3, baseband.vdif.header.VDIFMark5BHeader

baseband.vdif.payload Module

Definitions for VLBI VDIF payloads.

Implements a VDIFPayload class used to store payload words, and decode to
or encode from a data array.

See the VDIF specification page [https://www.vlbi.org/vdif] for payload
specifications.

Functions

	init_luts()

	Sets up the look-up tables for levels as a function of input byte.

	decode_1bit(words)

	

	decode_2bit(words)

	Decodes data stored using 2 bits per sample.

	decode_4bit(words)

	Decodes data stored using 4 bits per sample.

	encode_1bit(values)

	Encodes values using 1 bit per sample, packing the result into bytes.

	encode_2bit(values)

	Encodes values using 2 bits per sample, packing the result into bytes.

	encode_4bit(values)

	Encodes values using 4 bits per sample, packing the result into bytes.

Classes

	VDIFPayload(words[, header, nchan, bps, …])

	Container for decoding and encoding VDIF payloads.

Class Inheritance Diagram

Inheritance diagram of baseband.vdif.payload.VDIFPayload

baseband.vdif.frame Module

Definitions for VLBI VDIF frames and frame sets.

Implements a VDIFFrame class that can be used to hold a header and a
payload, providing access to the values encoded in both. Also, define
a VDIFFrameSet class that combines a set of frames from different threads.

For the VDIF specification, see https://www.vlbi.org/vdif

Classes

	VDIFFrame(header, payload[, valid, verify])

	Representation of a VDIF data frame, consisting of a header and payload.

	VDIFFrameSet(frames[, header0])

	Representation of a set of VDIF frames, combining different threads.

Class Inheritance Diagram

Inheritance diagram of baseband.vdif.frame.VDIFFrame, baseband.vdif.frame.VDIFFrameSet

baseband.vdif.file_info Module

The VDIFFileReaderInfo property.

Includes information about threads and frame sets.

Classes

	VDIFFileReaderInfo([parent])

	

Class Inheritance Diagram

Inheritance diagram of baseband.vdif.file_info.VDIFFileReaderInfo

baseband.vdif.base Module

Functions

	open(name[, mode])

	Open VDIF file(s) for reading or writing.

Classes

	VDIFFileReader(fh_raw)

	Simple reader for VDIF files.

	VDIFFileWriter(fh_raw)

	Simple writer for VDIF files.

	VDIFStreamBase(fh_raw, header0[, …])

	Base for VDIF streams.

	VDIFStreamReader(fh_raw[, sample_rate, …])

	VLBI VDIF format reader.

	VDIFStreamWriter(fh_raw[, header0, …])

	VLBI VDIF format writer.

Class Inheritance Diagram

Inheritance diagram of baseband.vdif.base.VDIFFileReader, baseband.vdif.base.VDIFFileWriter, baseband.vdif.base.VDIFStreamBase, baseband.vdif.base.VDIFStreamReader, baseband.vdif.base.VDIFStreamWriter

open

	
baseband.vdif.open(name, mode='rs', **kwargs)

 VDIFFrame

VDIFFrame

	
class baseband.vdif.VDIFFrame(header, payload, valid=None, verify=True)

 VDIFFrameSet

VDIFFrameSet

	
class baseband.vdif.VDIFFrameSet(frames, header0=None)

 VDIFHeader

VDIFHeader

	
class baseband.vdif.VDIFHeader(words, edv=None, verify=True, **kwargs)

 VDIFPayload

VDIFPayload

	
class baseband.vdif.VDIFPayload(words, header=None, nchan=1, bps=2, complex_data=False)

 VDIFHeader

VDIFHeader

	
class baseband.vdif.header.VDIFHeader(words, edv=None, verify=True, **kwargs)

 VDIFBaseHeader

